Small-molecule High-throughput Screening Identifies an MEK Inhibitor PD198306 that Enhances Sorafenib Efficacy via MCL-1 and BIM in Hepatocellular Carcinoma Cells

Author:

Cai Xiujun1,Hong Junjie12,Zheng Wei3

Affiliation:

1. Department of General Surgery, Key Laboratory of Laparoscopic Technique Research of Zhejiang Province, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310016, China

2. National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD 20850, USA.

3. National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD 20850, USA

Abstract

Background: Sorafenib is the most widely used systematic therapy drug for treating unresectable Hepatocellular Carcinoma (HCC) but showed dissatisfactory efficacy in clinical applications. Objective: We conducted a combinational quantitative small-molecule high-throughput screening (qHTS) to identify potential candidates to enhance the treatment effectiveness of sorafenib. Methods: First, using a Hep3B human HCC cell line, 7051 approved drugs and bioactive compounds were screened, then the primary hits were tested with/without 0.5 μM sorafenib respectively, the compound has the half maximal Inhibitory Concentration (IC50) shift value greater than 1.5 was thought to have the synergistic effect with sorafenib. Furthermore, the MEK inhibitor PD198306 was selected for the further mechanistic study. Results: 12 effective compounds were identified, including kinase inhibitors targeting MEK, AURKB, CAMK, ROCK2, BRAF, PI3K, AKT and EGFR, and a μ-opioid receptor agonist and a Ltype calcium channel blocker. The mechanistic research of the combination of sorafenib plus PD198306 showed that the two compounds synergistically inhibited MEK-ERK and mTORC1- 4EBP1 and induced apoptosis in HCC cells, which can be attributed to the transcriptional and posttranslational regulation of MCL-1 and BIM. Conclusion: Small-molecule qHTS identifies MEK inhibitor PD1938306 as a potent sorafenib enhancer, together with several novel combination strategies that are valuable for further studies.

Publisher

Bentham Science Publishers Ltd.

Subject

Organic Chemistry,Computer Science Applications,Drug Discovery,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3