Comprehensive Analysis of Epigenetic Associated Genes with Differential Gene Expression and Prognosis in Gastric Cancer

Author:

Li Yan1,An Songlin1,Li Xinbao1,Li Bing1

Affiliation:

1. Peritoneal Oncology Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing 100030, China

Abstract

Background: Gastric cancer (GC) is the most common malignancy of the human digestive system and represents the second leading cause of cancer-related deaths. As early GC is generally mild or asymptomatic and advanced GC is commonly diagnosed, early detection has a significant impact on clinical outcomes. This study aimed to identify epigenetic factors (EFs) as potential GC biomarkers. Methods: We identified 3572 differential expressed genes (DEGs) from 436 GC tissues and 41 non-tumor adjacent samples through The Cancer Genome Atlas (TCGA) datasets. Among them, a total of 57 overlapped genes were identified as differentially expressed EFs (DE-EFs), including 25 up-regulated DE-EFs and 32 down-regulated DE-EFs. Results: Then, Gene Ontology (GO) enrichment analysis revealed that the DE-EFs were mainly associated with histone modification, chromatin remodeling, histone binding, modificationdependent protein binding, etc. Meanwhile, Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis results suggested that RNA degradation, thermogenesis, shigellosis, insulin resistance, AMPK, and FoxO signaling pathways play roles in the progression of GC. Subsequently, Cox regression and Kaplan-Meier analysis showed that higher expression levels of the three hub EFs, including BRCC3, USP12, and WAC, were associated with better patients’ OS. We also found that GC patients in the TCGA dataset with the earlier stage of TNM stage, invasion, depth of tumor, lymph node metastasis, distant metastasis, and younger age had significantly better GC patients’ OS. Discussion: Furthermore, as the pathway enrichment analysis showed that BRCC3 participated in NOD-like receptors (NLRs)-mediated signaling and the homologous recombination (HR) pathways, strong and statistically significant positive relationships were found between BRCC3 with genes in NLRs signaling and HR pathways, including BRCA1, BRCA2, Rad51, BRE, TOPBP1, HSP90AA1, CASP1, NEK7, and SUGT1, respectively. Conclusion: We found three hub EFs, namely BRCC3, USP12, and WAC, which were downregulated in GC tissues compared to normal tissues, associated with the overall survival of GC patients and could be used as potential biomarkers to predict prognosis in GC patients. The regulation of hub genes in GC may promote the exploration of the epigenetic mechanisms associated with tumorigenesis and provide potential targets for GC diagnosis and treatment.

Funder

Beijing Haidian District Health Development Research and Cultivation Program

Publisher

Bentham Science Publishers Ltd.

Subject

Organic Chemistry,Computer Science Applications,Drug Discovery,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3