Penehyclidine Hydrochloride Protects Rat Cardiomyocytes from Ischemia- Reperfusion Injury by Platelet-derived Growth Factor-B

Author:

Ma Jun1,Lu Yan12,Zi Congna3,Zhang Liang1,Cui Boqun1,Li Ling2

Affiliation:

1. Department of Anesthesiology, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China

2. Department of Anesthesiology, Affiliated Hospital of Chengde Medical College, Chengde 067000, China

3. Department of Anesthesiology, The First Affiliated Hospital of Hebei North University, Zhangjiakou 075000, Hebei, China

Abstract

Aims and Objective: The lack of effective treatments for myocardial ischemiareperfusion (MI-R) injury severely restricts the effectiveness of the treatment of ischemic heart disease. In the present research, we aimed to investigate the protective effect and molecular mechanism of penehyclidine hydrochloride (PHC) on MI-R cells. Method: Cell viability was quantified using CCK8. Cell apoptosis was analyzed using flow cytometry. Western blot and Elisa assays were used for the detection of target proteins. Result: PHC pretreatment attenuated the inhibition of cell viability and decreased the percentage of apoptosis induced by simulated ischemia reperfusion (SIR). Platelet-derived growth factor B (PDGF-B) and its downstream AKT pathway were activated in PHC pretreated cells. After siRNAPDGF- B transfection, cell viability was inhibited and apoptosis was activated in PHC pretreated SIR cells, suggesting that PHC protected cells from SIR. PDGF-B knockdown also increased the levels of CK, LDH, IL-6 and TNF-α in PHC pretreated SIR cells. The effect of AKT inhibitor on H9C2 cells was consistent with that of PDGF-B knockdown. Conclusion: PHC pretreatment can protect cardiomyocytes from the decrease of cell activity and the increase of apoptosis caused by reperfusion through up-regulating PDGF-B to activate PI3K pathway. Our study indicates that PHC is a potential drug to protect cells from reperfusion injury and PDGF-B is a potential target for preventing MI-R injury.

Publisher

Bentham Science Publishers Ltd.

Subject

Organic Chemistry,Computer Science Applications,Drug Discovery,General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3