Identification of Xanthine Derivatives as Inhibitors of Phosphodiesterase 9A Through In silico and Biological Studies

Author:

Singh Nivedita1,Patra Swagata1,Patra Sanjukta1

Affiliation:

1. Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, India

Abstract

Background: In recent times, computer aided methodologies have received broad attention in drug development. These studies have improved the accuracy and shortened the time frame to identify suitable drug candidates from large datasets. Xanthine is a plant alkaloid which also acts as an intermediate product on the pathway of purine degradation. Xanthine acts as scaffold for various natural and synthetically derived bioactive molecules. Objective: The present work aims to screen xanthine derivatives targeting phosphodiesterase 9A (PDE9A), one of the most important regulatory protein of signal transduction. Method: In silico approach such as Virtual screening, molecular docking and molecular dynamic was attempted to screen a repertoire of 2055 xanthine derivatives extracted from ZINC database against PDE9A. The potency of the resultant screened compound was finally validated by spectrophotometric malachite green inhibition assay. Results: Preliminary virtual screening narrowed down the compounds to a list of 10 which is followed by a second round of stringent screening using molecular docking approach. Top four hits were selected for thorough interaction analysis with PDE9A. The molecular docking analysis of best ranked compound, ZINC62579975 (-12.59) revealed its potential to establish essential chemical interactions with inhibition determining key residues in the PDE9A active site. The stability of ZINC62579975 in PDE9A was further validated by 6 ns molecular dynamic simulation studies. The in vitro malachite spectrophotometric assay confirmed the bioactive potential of the above compound. Comparative inhibition studies asserted more potency of ZINC62579975 towards PDE9A (46.96 ± 1.78 µM) than PDE5A (61.023 ± 1.71 µM) and PDE4D (70.04 ± 1.98 µM). Conclusion: The entire study validates ZINC62579975 as a potent candidate molecule for PDE9A inhibition. The present study provides a roadmap for future drug designing of more potent xanthine derivatives. This study also explores the potential of xanthine scaffold in future drug development process.

Publisher

Bentham Science Publishers Ltd.

Subject

Organic Chemistry,Computer Science Applications,Drug Discovery,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3