Characterization CYP1A2, CYP2C9, CYP2C19 and CYP2D6 Polymorphisms Using HRMA in Psychiatry Patients with Schizophrenia and Bipolar Disease for Personalized Medicine

Author:

Yenilmez Ebru Dundar1,Tamam Lut1,Karaytug Onur2,Tuli Abdullah1

Affiliation:

1. Medical Biochemistry, Faculty of Medicine, University of Cukurova, Adana, Turkey

2. Psychiatry, Faculty of Medicine, University of Cukurova, Adana, Turkey

Abstract

Background: The interindividual genetic variations in drug metabolizing enzymes effects the impact and toxicity in plenty of drugs. Objective: CYP1A2, CYP2C9, CYP2C19 and CYP2D6 gene polymorphisms were characterized using high resolution melting analysis (HRMA) in follow-up patients in psychiatry clinic as a preliminary preparation for personalized medicine. Method: Genotyping of CYP1A2*1F, CYP2C9 *2, *3, CYP2C19 *2, *3 and *17 and CYP2D6 *3, *4 was conducted in 101 patients using HRMA. Genotype and allele frequencies of the CYP variants were found to be in equilibrium with the Hardy-Weinberg equation. Results: The frequency of the CYP1A2*1F allele in schizophrenia and bipolar disease was 0.694 and 0.255, respectively. The CYP2C9 allele frequencies were 0.087 (CYP2C9*2), and 0.549 (CYP2C9*3) for bipolar; 0.278 (CYP2C9*2) and 0.648 (CYP2C9*3) in schizophrenias. The CYP2C19*2 and *17 allele frequencies was 0.111 and 0.185 in schizophrenia and variant *2 was 0.117 and variant *17 was 0.255 in bipolar group. The frequency of the CYP2D6*3 allele was 0.027 in schizophrenias. The frequencies for the CYP2D6*4 variant were 0.092 and 0.096 in schizophrenia and bipolar groups, respectively. Conclusion: The knowledge in pharmacogenomic and also the developments in molecular genetics are growing rapidly. In future, this can be expected to provide new methodologies in the prediction of the activity in drug metabolizing enzymes. The HRMA is a rapid and useful technique to identify the genotypes for drug dosage adjustment before therapy in psychiatry patients.

Publisher

Bentham Science Publishers Ltd.

Subject

Organic Chemistry,Computer Science Applications,Drug Discovery,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3