Combinatorial Synthesis of Novel 1-Sulfonyloxy/acyloxyeugenol Derivatives as Fungicidal Agents

Author:

Chen Genqiang1,Zhu Lina1,He Jiaxuan1,Zhang Song1,Li Yuanhao1,Guo Xiaolong1,Sun Di1,Tian Yuee1,Liu Shengming1,Huang Xiaobo1,Che Zhiping1ORCID

Affiliation:

1. Laboratory of Pesticidal Design & Synthesis, Department of Plant Protection, College of Horticultrue and Plant Protection, Henan University of Science and Technology, Luoyang 471023, China

Abstract

Background: Developing the high-efficiency and low-risk small-molecule green-fungicide is the key to effective control of the plant pathogenic oomycetes. Essential oils play a very important role in novel fungicide discovery for their unique sources and potential target sites. Eugenol, a kind of plant essential oil, was mainly isolated from the unopened and dried flower buds of Syzygium aromaticum of the Myrtaceae family. Due to its unique structural skeleton, eugenol and its derivatives have exhibited a wide range of biological activities. However, study on the synthesis of novel 1-sulfonyloxy/acyloxyeugenol derivatives as fungicidal agents against Phytophthora capsici has not yet been reported. Methods: Twenty-six novel 1-sulfonyloxy/acyloxyeugenol derivatives (3a-p and 5a-j) were prepared and their structures were well characterized by 1H NMR, HRMS, and m.p.. Their fungicidal activity was evaluated against P. capsici by using the mycelial growth rate method. Results: To find novel natural-product-based fungicidal agents to control the plant pathogenic oomycetes, we herein designed and synthesized two series of novel 1-sulfonyloxy/acyloxyeugenol derivatives (3a-p and 5a-j) as fungicidal agents against P. capsici Leonian, in vitro. Results of fungicidal activity revealed that, among all compounds, especially compounds 3a, 3f, and 3n displayed the most potent anti-oomycete activity against P. capsici with EC50 values of 79.05, 75.05, and 70.80, respectively. Conclusion: The results revealed that the anti-oomycete activity of eugenol with the sulfonyloxy group was higher than that with the acyloxy group. It is suggested that the fungicidal activity of eugenol can be improved by introducing the sulfonyloxy group. This will pave the way for further design, structural modification, and to develop eugenol derivatives as fungicidal agents.

Publisher

Bentham Science Publishers Ltd.

Subject

Organic Chemistry,Computer Science Applications,Drug Discovery,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3