High Throughput Screening for Drug Discovery and Virus Detection

Author:

Okea Adetola1,Sahin Deniz2,Chen Xin3ORCID,Shang Ying4

Affiliation:

1. Department of Electrical Engineering, Southern Illinois University, Edwardsville, United States

2. Department of Innovation Management, Entrepreneurship and Sustainability, Technische Universität Berlin, Germany

3. Department of Industrial Engineering, Southern Illinois University, Edwardsville, United States

4. Department of Electrical Engineering, Indiana Institute of Technology, Fort Wayne, United States

Abstract

Background: High throughput screening systems are automated labs for the analysis of many biochemical substances in the drug discovery and virus detection process. This paper was motivated by the problem of automating testing for viruses and new drugs using high throughput screening systems. The emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) at the turn of 2019-2020 presented extradentary challenges to public health. Existing approaches to test viruses and new drugs do not use optimal schedules and are not efficient. Objective: The scheduling of activities performed by various resources in a high throughput screening system affects its efficiency, throughput, operations cost, and quality of screening. This study aims to minimize the total screening (flow) time and ensure the consistency and quality of screening. Methods: This paper develops innovative mixed integer models that efficiently compute optimal schedules for screening many microplates to identify new drugs and determine whether samples contain viruses. The methods integrate job-shop and cyclic scheduling. Experiments are conducted for a drug discovery process of screening an enzymatic assay and a general process of detecting SARS-CoV-2. Results: The method developed in this article can reduce screening time by as much as 91.67%. Conclusion: The optimal schedules for high throughput screening systems greatly reduce the total flow time and can be computed efficiently to help discover new drugs and detect viruses.

Publisher

Bentham Science Publishers Ltd.

Subject

Organic Chemistry,Computer Science Applications,Drug Discovery,General Medicine

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3