Electroanalytical Analysis of Guaifenesin on Poly(Acridine Orange) Modified Glassy Carbon Electrode and its Determination in Pharmaceuticals and Serum Samples

Author:

Işık Hasan1ORCID,Öztürk Gökçe1ORCID,Ağın Fatma1ORCID,Kul Dilek1

Affiliation:

1. Department of Analytical Chemistry, Faculty of Pharmacy, Karadeniz Teknik University, Trabzon,Turkey

Abstract

Background: Electroanalytical methods are very functional to detect drugs in pharmaceuticals (tablets, syrups, suppositories, creams, and ointments) and biological samples. Objective: This study is aimed to make selective, sensitive, simple, fast, and low cost electrochemical analysis of expectorant drug guaifenesin in pharmaceuticals and serum samples. Methods: Differential pulse adsorptive stripping voltammetric method for determination of guaifenesin on a poly(acridine orange) modified glassy carbon electrode has been developed. Glassy carbon electrode was modified with electropolymerization of the acridine orange monomer for the sensitive determination of guaifenesin. Guaifenesin provided highly reproducible and welldefined irreversible oxidation peaks at +1.125 V and +1.128 V (vs. Ag/AgCl) in the selected supporting electrolyte and human serum samples, respectively. Results: Under optimized conditions, linear response of peak current on the concentration of guaifenesin has been obtained in the ranges of 2.00×10-7 to 1.00×10-4 M in Britton Robinson buffer solution at pH 7.0 and 4.00×10-7 to 1.00×10-4 M in serum samples. The precision of the method was detected by intraday and inter-day repeatability studies in the supporting electrolyte and serum samples media. Conclusion: The analytical applicability of the proposed method exhibited satisfying determination results for guaifenesin from pharmaceutical dosage forms (syrup) and human serum samples without any pre-separation procedures.

Funder

Karadeniz Teknik University Scientific Research Foundation

Publisher

Bentham Science Publishers Ltd.

Subject

Organic Chemistry,Computer Science Applications,Drug Discovery,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3