Protein-protein Interaction and Molecular Dynamics of Iturin A Gene on Effector Proteins of Phytophthora infestans

Author:

Kumbar Bhimanagoud1,Kandagalla Shivananda2,Bharath Basavapattana Rudresh3,Sharath Belenahalli Shekarappa1,Mahmood Riaz1

Affiliation:

1. Department of Biotechnology, Kuvempu University, Shankaraghatta, Shivamogga, Karnataka 577451, India

2. Laboratory of Computational Modeling of Drugs, Higher Medical and Biological School, South Ural State University, Chelyabinsk, 4540008, Chaikovskogo 20A, Russian Federation

3. Department of Biotechnology, NMAM, Institute of Technology, NITTE, Karnataka, India

Abstract

Aim And Objectives: Phytophthora infestans (Mont.) de Bary, the fungal pathogen causes late blight, which results in devastating economic loss among the Solanaceae. The bacillus lipopeptides show the antagonistic activity against the many plant pathogens, among bacillus lipopeptides reported as the antifungal gene. Hence, to understand the in silico antifungal activity, we have selected gene iturin A (AXN89987) produced by Bacillus spp to check the molecular dynamics study with the effector proteins of the P. infestanse. In this concern, known effector proteins of P. infestans were subjected to the protein-protein interaction followed by simulation. Material and Method: turin A gene was amplified using the soil bacterium Bacillus subtilis with gene-specific primers, cloned into pTZ 57R/T vector and confirmed by sequencing. To get better insights, the protein model was developed for Iturin A using Modeller 9.17, using PDB structure of ID 4MRT (Phosphopantetheine transferase Sfp) and 1QR0 (4'-phosphopantetheinyl moiety of coenzyme A) as a template, it shared the identity 72% and expected P-value: 3e-121, respectively. The model quality was assessed using ProSA and PROCHECK programs. Results: The potency of modelled protein against effector proteins of P. infestans were evaluated in silico using the HADDOCK server and the results showed the high affinity of towards the effector protein Host ATG8 (PDB-5L83). Finally, the simulation was performed to the docked conformation of with Host ATG8 to further understand the stability of the complex using the Desmond program. Conclusion: Altogether, the protein-protein interaction and simulation study propose a new methodology and to uncover possible antifungal activity of iturin A against effector proteins of P. infestans.

Publisher

Bentham Science Publishers Ltd.

Subject

Organic Chemistry,Computer Science Applications,Drug Discovery,General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3