Transcriptome-wide Association Study Identifies Genetically Dysregulated Genes in Diabetic Neuropathy

Author:

Lan Danfeng1,Jiang Hong-Yan2,Su Xiaoyang1,Zhao Yan1,Du Sicheng1,Li Ying1,Bi Rui3,Zhang Deng-Feng3,Yang Qiuping1

Affiliation:

1. Department of Geriatrics, The First Affiliated Hospital of Kunming Medical University, Kunming, China

2. Department of Psychiatry, The First Affiliated Hospital of Kunming Medical University, Kunming, China

3. Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming650223, China

Abstract

Background: Complications are the main cause of the disease burden of diabetes. Genes determining the development and progression of diabetic complications remain to be identified. Diabetic neuropathy is the most common and debilitating complication and mainly affects the nerves of legs and feet. In this study, we attempted to identify diabetic neuropathy-specific genes from reliable large-scale genome-wide association studies (GWASs) for diabetes perse. Methods: Taking advantage of publicly available data, we initially converted the GWAS signals to transcriptomic profiles in the tibial nerve using the functional summary-based imputation (FUSION) algorithm. The FUSION-derived genes were then checked to determine whether they were differentially expressed in the sciatic nerve of mouse models of diabetic neuropathy. The dysregulated genes identified in the sciatic nerve were explored in the blood of patients with diabetes. Results: We found that eleven out of 452 FUSION-derived genes were regulated by diabetes GWAS loci and were altered in the sciatic nerve of mouse models with early-stage neuropathy. Among the eleven genes, significant (P-value#60;0.05) expression alterations of HSD17B4, DHX32, MERTK, and SFXN4 could be detected in the blood of human patients. Conclusions: Our analyses identified genes with an effect in the sciatic nerve and provided the possibility of noninvasive early detection of diabetic neuropathy.

Funder

National Natural Science Foundation of China

Yunnan Health Training Project of High Level Talents

Applied Basic Research key project and general programs of Yunnan Province

Publisher

Bentham Science Publishers Ltd.

Subject

Organic Chemistry,Computer Science Applications,Drug Discovery,General Medicine

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3