Variable Screening for Near Infrared (NIR) Spectroscopy Data Based on Ridge Partial Least Squares Regression

Author:

Zhao Naifei1,Xu Qingsong2,Tang Man-lai3,Wang Hong2

Affiliation:

1. School of Mathematics and Statistics, Changsha University of Science & Technology, Changsha, China

2. School of Mathematics and Statistics, Central South University Changsha, Hunan, China

3. Department of Mathematics and Statistics, Hang Seng University of Hong Kong, Hong Kong, China

Abstract

Aim and Objective: Near Infrared (NIR) spectroscopy data are featured by few dozen to many thousands of samples and highly correlated variables. Quantitative analysis of such data usually requires a combination of analytical methods with variable selection or screening methods. Commonly-used variable screening methods fail to recover the true model when (i) some of the variables are highly correlated, and (ii) the sample size is less than the number of relevant variables. In these cases, Partial Least Squares (PLS) regression based approaches can be useful alternatives. Materials and Methods : In this research, a fast variable screening strategy, namely the preconditioned screening for ridge partial least squares regression (PSRPLS), is proposed for modelling NIR spectroscopy data with high-dimensional and highly correlated covariates. Under rather mild assumptions, we prove that using Puffer transformation, the proposed approach successfully transforms the problem of variable screening with highly correlated predictor variables to that of weakly correlated covariates with less extra computational effort. Results: We show that our proposed method leads to theoretically consistent model selection results. Four simulation studies and two real examples are then analyzed to illustrate the effectiveness of the proposed approach. Conclusion: By introducing Puffer transformation, high correlation problem can be mitigated using the PSRPLS procedure we construct. By employing RPLS regression to our approach, it can be made more simple and computational efficient to cope with the situation where model size is larger than the sample size while maintaining a high precision prediction.

Funder

National Natural Science Foundation of China

University Grants Committee (UGC) of the Hong Kong Special Administrative Region

Hunan Provincial Social Science Foundation of China

National Social Science Foundation of China

Publisher

Bentham Science Publishers Ltd.

Subject

Organic Chemistry,Computer Science Applications,Drug Discovery,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3