Computer-aided Drug Design Investigations for Benzothiazinone Derivatives Against Tuberculosis

Author:

Viana Jéssika O.1,Scotti Marcus T.1,Scotti Luciana1ORCID

Affiliation:

1. Federal University of Paraíba, Health Science Center, 50670-910, Joao Pessoa, PB, Brazil

Abstract

Background: Tuberculosis (Mycobacterium tuberculosis) is an infectious bacterial disease with the highest levels of mortality worldwide, presenting numerous cases of resistance. In silico studies, which elaborate chemical and biological models in computational tools and make it possible to interpret molecular characteristics, are among the methods used in the search for new drugs. Objective: In this perspective, our aim was to use QSAR and molecular modeling to propose possible pharmacophores from benzothiazinone derivatives. Methods: In this study, a set of 69 benzothiazinone derivatives, together with computational tools such as molecular descriptor analysis in chemometrics, metabolic prediction, and molecular coupling to 4 proteins: DprE1, InhA, PS, and DHFR important for the bacillus were investigated. Results: The chemometric model computed in the Volsurf+ program presented good predictive values for both amphiphilicity and molecular volume. These are essential for biological activity. Metabolites from the cytochrome isoforms CYP3A4 and 2D6 interactions revealed coupling divergences which, noting that the metabolites did not present changes to the QSAR proposed pharmacophore structures, may be due to the reaction medium and existing differences in the benzothiazinone structures. Similarly, molecular docking with the four TB enzymes presented good interactions for the more active compounds. The fragments found using QSAR (being essential for biological activity) also presented as being essential for ligand-protein site interactions. Conclusion: From the benzothiazinone derivative series evaluated, compound 11026134 presented the best profile in all study analyses, noting that the trifluoromethyl, nitro group, and piperazine fragment with aliphatic hydrocarbon groups are likely pharmacophores for the benzothiazinones studied.

Funder

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior

Publisher

Bentham Science Publishers Ltd.

Subject

Organic Chemistry,Computer Science Applications,Drug Discovery,General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3