TargetMM: Accurate Missense Mutation Prediction by Utilizing Local and Global Sequence Information with Classifier Ensemble

Author:

Ge Fang1,Hu Jun2,Zhu Yi-Heng1,Arif Muhammad1,Yu Dong-Jun1

Affiliation:

1. School of Computer Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, China

2. College of Information Engineering, Zhejiang University of Technology, Hangzhou 310023, China

Abstract

Aim and Objective: Missense mutation (MM) may lead to various human diseases by disabling proteins. Accurate prediction of MM is important and challenging for both protein function annotation and drug design. Although several computational methods yielded acceptable success rates, there is still room for further enhancing the prediction performance of MM. Materials and Methods: In the present study, we designed a new feature extracting method, which considers the impact degree of residues in the microenvironment range to the mutation site. Stringent cross-validation and independent test on benchmark datasets were performed to evaluate the efficacy of the proposed feature extracting method. Furthermore, three heterogeneous prediction models were trained and then ensembled for the final prediction. By combining the feature representation method and classifier ensemble technique, we reported a novel MM predictor called TargetMM for identifying the pathogenic mutations from the neutral ones. Results: Comparison outcomes based on statistical evaluation demonstrate that TargetMM outperforms the prior advanced methods on the independent test data. The source codes and benchmark datasets of TargetMM are freely available at https://github.com/sera616/TargetMM.git for academic use.

Funder

Natural Science Foundation of Anhui Province of China

Natural Science Foundation of Jiangsu Province

National Natural Science Foundation of China

Publisher

Bentham Science Publishers Ltd.

Subject

Organic Chemistry,Computer Science Applications,Drug Discovery,General Medicine

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3