Design, Synthesis and Biological Evaluation of New Cycloalkyl Fused Quinolines Tethered to Isatin Schiff Bases as Cholinesterase Inhibitors

Author:

Macha Baswaraju1,Kulkarni Ravindra2ORCID,Garige Anil Kumar3,Palabindala Rambabu1,Akkinepally Raghuramrao1,Garlapati Achaiah1ORCID

Affiliation:

1. Medicinal Chemistry Division, University College of Pharmaceutical Sciences, University, Warangal, Telangana- 506009, India

2. Bharati Vidyapeeth's Poona College of Pharmacy, Paudh Road, Erandawane, Pune-411038, India

3. Jayamukhi Institute of Pharmaceutical Sciences, Narsampet, Warangal, 506332, India

Abstract

Aims and Objective: Alzheimer’s disease is now a most prevalent neurodegenerative disease of central nervous system leading to dementia in elderly population. Numerous pathological changes have been associated in the progression of Alzheimer’s disease. One of such pathological hypotheses is declined cholinergic activity which eventually leads to cognitive and memory deficits. Inhibition o f cholinesterases will apparently elevate acetyl choline levels which is benefactor on cognitive symptoms of the disease. This manuscript describes the new tacrine derivatives tethered to isatin Schiff bases through alkanoyl linker and screened for cholinesterase inhibitory activity. Materials and Methods: Tacrine and two more cycloalkyl ring fused quinolones were synthesized and converted to Ncycloalkyl fused quinoline chloroamides. Isatin Schiff bases were also synthesized by the reaction between isatin and substituted aromatic anilines and in subsequent reaction, isatin Schiff bases were reacted with cycloalkyl fused quinolones to afford anticipated compounds 10a-i, 11a-i and 12a-i. All the compounds have been screened for acetyl and butyryl cholinesterase inhibitory activity and in vivo behavioral studies. Binding interactions of the desired compounds have also been studied by docking them in active site of both cholinesterases. Results: Three compounds 12d, 12e and 12h with propionyl and butyroyl linker between amine and isatin Schiff base scaffold have shown potent acetyl and butyryl cholinesterase inhibitory activity. However most potent cholinesterase inhibitor was 13d with IC50 value of 0.71±0.004 and 1.08±0.02 μM against acetyl and butyryl cholinesterases respectively. The hepatotoxicity of potent compounds revealed that the tested compounds were less hepatotoxic than tacrine and also exhibited encouraging in vivo behavioral studies in test animals. Docking studies of all the molecules disclosed close hydrogen bond interactions within the binding site of both cholinesterases. Conclusion: New cycloalkyl fused quinolones tethered with alkoyl linker to isatin Schiff bases endowed significant and potent cholinesterase inhibitory activities. Few of the compounds have also exhibited lesser hepatotoxicity and all the synthesized compounds were good in behavioral studies. Molecular docking studies also indicated close interactions in active site of cholinesterases.

Funder

University Grants Commission UGC Major Research Project

Publisher

Bentham Science Publishers Ltd.

Subject

Organic Chemistry,Computer Science Applications,Drug Discovery,General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3