Hosoya Polynomial for Subdivided Caterpillar Graphs

Author:

Numan Muhammad1,Nawaz Aamra1,Aslam Adnan2,Butt Saad Ihsan3

Affiliation:

1. Department of Mathematics, COMSATS University Islamabad Attock Campus , Attock,Pakistan

2. Department of Natural Sciences and Humanities, University of Engineering and Technology, Lahore,Pakistan

3. Department of Mathematics, COMSATS University Islamabad Lahore Campus , Lahore,Pakistan

Abstract

Background: Computing Hosoya polynomial for the graph associated with the chemical compound plays a vital role in the field of chemistry. From Hosoya polynomial, it is easy to compute Weiner index(Weiner number) and Hyper Weiner index of the underlying molecular structure. The Wiener number enables the identifying of three basic features of molecular topology: branching, cyclicity, and centricity (or centrality) and their specific patterns, which are well reflected by the physicochemical properties of chemical compounds. Caterpillar trees have been used in chemical graph theory to represent the structure of benzenoid hydrocarbons molecules. In this representation, one forms a caterpillar in which each edge corresponds to a 6-carbon ring in the molecular structure, and two edges are incident at a vertex whenever the corresponding rings belong to a sequence of rings connected end-to-end in the structure. Due to the importance of Caterpillar trees, it is interesting to compute the Hosoya polynomial and the related indices. Method: The Hosoya polynomial of a graph G is defined as H(G;x)=∑_(k=0)d(G) d(G,k) x^k . In order to compute the Hosoya polynomial, we need to find its coefficients d(G,k) which is the number of pair of vertices of G which are at distance k. We classify the ordered pair of vertices which are at distance m,2≤m≤(n+1)k in the form of sets. Then finding the cardinality of these sets and adding up will give us the value of coefficient d(G,m). Finally using the values of coefficients in the definition we get the Hosoya polynomial of Uniform subdivision of caterpillar graph. Result: In this work we compute the closed formula of Hosoya polynomial for subdivided caterpillar trees. This helps us to compute the Weiner index and hyper-Weiner index of uniform subdivision of caterpillar graph. Conclusion: Caterpillar trees are among one of the important and general classes of trees. Thorn rods and thorn stars are the important subclasses of caterpillar trees. The ideas of the present research article is to give a road map to those researchers who are interesting to study the Hosoya polynomial for different trees.

Publisher

Bentham Science Publishers Ltd.

Subject

Organic Chemistry,Computer Science Applications,Drug Discovery,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3