Identification of the Active Constituents and Significant Pathways of Guizhi-Shaoyao-Zhimu Decoction for the Treatment of Diabetes Mellitus Based on Molecular Docking and Network Pharmacology

Author:

Zhang Qing1ORCID,Li Ruolan1ORCID,Peng Wei1ORCID,Zhang Mengmeng1ORCID,Liu Jia1,Wei Shujun2ORCID,Wang Jiaolong1ORCID,Wu Chunjie1ORCID,Gao Yongxiang2ORCID,Pu Xufeng1ORCID

Affiliation:

1. School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China

2. School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China

Abstract

Aim and Objective: This study was designed to explore the active compounds and significant pathways of Guizhi-Shaoyao-Zhimu decoction (GSZD) for treating diabetes mellitus using molecular docking combined with network pharmacology. Materials and Methods: Chemical constituents of GSZD and diabetes-related target proteins were collected from various databases. Then, compounds were filtered by Lipinski’s and Veber’s rules with Discovery studio software. The “Libdock” module was used to carry out molecular docking, and LibDockScores, default cutoff values for hydrogen bonds, and van der Waals interactions were recorded. LibDockScore of the target protein and its prototype ligand was considered as the threshold, and compounds with higher LibDockScores than the threshold were regarded as the active constituents of GSZD. Cytoscape software was used to construct the herb-active molecule-target interaction network of GSZD. ClueGO and CluePedia were applied to enrich the analysis of the biological functions and pathways of GSZD. Results: A total of 275 potential active compounds with 57 possible pathways in GSZD were identified by molecular docking combined with network pharmacology. TEN, INSR, PRKAA2, and GSK3B are the four most important target proteins. Gancaonin E, 3'-(γ,γ-dimethylallyl)-kievitone, aurantiamide, curcumin and 14-O-cinnamoylneoline, could interact with more than 14 of the selected target proteins. Besides, 57 potential pathways of GSZD were identified, such as insulin signaling pathway, metabolites and energy regulation, glucose metabolic process regulation, and positive regulation of carbohydrate metabolic process, etc. Conclusion: These results showed that molecular docking combined with network pharmacology is a feasible strategy for exploring bioactive compounds and mechanisms of Chinese medicines, and GSZD can be used to effectively treat diabetes through multi-components and multi-targets & pathways.

Funder

Sichuan Science and Technology Program

Ministry of Science and Technology of the People's Republic of China

Publisher

Bentham Science Publishers Ltd.

Subject

Organic Chemistry,Computer Science Applications,Drug Discovery,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3