A Spectral Rotation Method with Triplet Periodicity Property for Planted Motif Finding Problems

Author:

Wang Xun1,Wang Shudong1,Song Tao1ORCID

Affiliation:

1. School of Electrical Engineering and Automation, Tiangong University, Tianjin 300387, China

Abstract

Background: Genes are known as functional patterns in the genome and are presumed to have biological significance. They can indicate binding sites for transcription factors and they encode certain proteins. Finding genes from biological sequences is a major task in computational biology for unraveling the mechanisms of gene expression. Objective: Planted motif finding problems are a class of mathematical models abstracted from the process of detecting genes from genome, in which a specific gene with a number of mutations is planted into a randomly generated background sequence, and then gene finding algorithms can be tested to check if the planted gene can be found in feasible time. Method: In this work, a spectral rotation method based on triplet periodicity property is proposed to solve planted motif finding problems. Results: The proposed method gives significant tolerance of base mutations in genes. Specifically, genes having a number of substitutions can be detected from randomly generated background sequences. Experimental results on genomic data set from Saccharomyces cerevisiae reveal that genes can be visually distinguished. It is proposed that genes with about 50% mutations can be detected from randomly generated background sequences. Conclusion: It is found that with about 5 insertions or deletions, this method fails in finding the planted genes. For a particular case, if the deletion of bases is located at the beginning of the gene, that is, bases are not randomly deleted, then the tolerance of the method for base deletion is increased.

Funder

Comunidad de Madrid-EU

MINECO AEI/FEDER, Spain-EU

Talento-Comunidad de Madrid

AEI/FEDER, Spain

China University of Petroleum

Fundamental Research Funds for the Central Universities

Natural Science Foundation of Shandong Province

Key Research and Development Program of Shandong Province

National Natural Science Foundation of China

Publisher

Bentham Science Publishers Ltd.

Subject

Organic Chemistry,Computer Science Applications,Drug Discovery,General Medicine

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3