Network Pharmacology and Molecular Docking Approaches to Investigating the Mechanism of Action of Zanthoxylum bungeanum in the Treatment of Oxidative Stress-induced Diseases

Author:

Zhao Rong1,Zhang Meng-Meng1,Wang Dan1,Peng Wei1,Zhang Qing1,Liu Jia1,Ai Li2,Wu Chun-Jie1

Affiliation:

1. School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, Sichuan Province, China

2. College of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, Sichuan Province, China

Abstract

Background: Zanthoxylum bungeanum Maxim., a traditional Chinese herbal medicine, has been reported to possess therapeutic effects on diseases induced by oxidative stress (DOS), such as atherosclerosis and diabetes complication. However, the active components and their related mechanisms are still not systematically reported. Objective: The current study was aimed to explore the main active ingredients and its molecular mechanisms of Z. bungeanum for treating DOS using network pharmacology combined with molecular docking simulation. Methods: The active components of Z. bungeanum pericarps, in addition to the interacting targets, were identified from the Traditional Chinese Medicine Systems Pharmacology (TCMSP) database. These components were filtered using the parameters of oral bioavailability and drug-likeness, and the targets related to DOS were obtained from the Genecards and OMIM database. Furthermore, the overlapping genes were obtained, and a protein-protein interaction was visualized using the STRING database. Next, the Cytoscape software was employed to build a disease/drug/component/target network, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis were performed using R software. Finally, the potential active compounds and their related targets were validated using molecular docking technology. Results: A total of 61 active compounds, 280 intersection genes, and 105 signaling pathways were obtained. Functional enrichment analysis suggested that DOS occurs possibly through the regulation of many biological pathways, such as AGE-RAGE and HIF-1 signaling pathways. Thirty of the identical target genes showed obvious compact relationships with others in the STRING analysis. Three active compounds, quercetin, diosmetin, and beta-sitosterol, interacting with the four key targets, exhibited strong affinities. Conclusion: The findings of this study not only indicate the main mechanisms involving in the oxidative stress-induced diseases, but also provide the basis for further research on the active components of Z. bungeanum for treating DOS.

Funder

Sichuan Administration of Traditional Chinese Medicine

Publisher

Bentham Science Publishers Ltd.

Subject

Organic Chemistry,Computer Science Applications,Drug Discovery,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3