FermatS: A Novel Numerical Representation for Protein Sequence Comparison and DNA-binding Protein Identification

Author:

Zhang Yanping1,Gao Ya1,Ni Jianwei1,Chen Pengcheng1,Wang Xiaosheng1

Affiliation:

1. School of Mathematics and Physics Science and Engineering, Hebei University of Engineering, Handan 056038, China

Abstract

Aims: Based on protein sequence information, a simple and effective method was used to analyze protein sequence similarity and predict DNA-binding protein. Background: It is absolutely necessary that we generate computational methods of low complexity to accurate infer protein structure, function, and evolution in the rapidly growing number of molecular biology data available. Objective: It is important to generate novel computational algorithms for analyzing and comparing protein sequences with the rapidly growing number of molecular biology data available. Method: Based on global and local position representation with the curves of Fermat spiral and normalized moments of inertia of the curve of Fermat spiral, respectively, moreover, composition of 20 amino acids to get the numerical characteristics of protein sequences. Results: It has been applied to analyze the similarity/dissimilarity of nine ND5 proteins, the analysis results are consistent with the biological evolution theory. Furthermore, we employ the Logistic regression with 5-fold cross-validation to establish the prediction of DNA-binding proteins model, which outperformed the DNAbinder, iDNA-prot, DNA-prot and gDNA-prot by 0.0069-0.609 in terms of F-measure, 0.293-0.898 in terms of MCC in unbalanced dataset. Conclusion: These results show that our method, namely FermatS, is effective to compare, recognition and prediction the protein sequences.

Funder

Natural Science Foundation Project of Hebei

Department of Education in Hebei

National Natural Science Foundation of China

Publisher

Bentham Science Publishers Ltd.

Subject

Organic Chemistry,Computer Science Applications,Drug Discovery,General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3