Identification of Potential MicroRNA-MRNA Regulatory Relationship Pairs in Irritable Bowel Syndrome with Diarrhea

Author:

Yan Wenli1ORCID,Kan Zunqi1ORCID,Li Zhaofeng2ORCID,Ma Yuxia2ORCID,Du Dongqing2ORCID

Affiliation:

1. College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, China

2. Department of Acupuncture-Moxibustion and Tuina, Shandong University of Traditional Chinese Medicine, China

Abstract

Background: Irritable bowel syndrome (IBS) is the most common gastrointestinal disease worldwide, with diarrhea-predominant irritable bowel syndrome (IBS-D) being the prevalent subtype. However, its pathogenesis remains unclear. Research has increasingly focused on identifying genetic factors in the mechanisms underlying IBS. Objective: We aimed to explore key gene nodes and potential microRNA-mRNA regulatory pairs of IBS-D using bioinformatics methods. Methods: We downloaded the GSE36701 microarray dataset from the Gene Expression Omnibus database and obtained 1358 differentially expressed mRNAs by analyzing mRNA profiles using the GEO2R analysis tool. Based on our previous study, we used TargetScan, miTarBase, and miRDB to predict the downstream genes of three known microRNAs (hsa-let-7b-5p, hsa-miR-19b-3p, and hsamiR- 20a-5p), and the microRNA-mRNA regulatory network was visualized using Cytoscape. Results: A total of 795 downstream target genes were found in TargetScan, miRTarBase, and miRDB databases, and 50 candidate genes were obtained. The Metascape and STRING databases were used to perform enrichment analysis and construct a protein-protein interaction network of candidate genes. Finally, we constructed a network of 3 microRNAs and 50 candidate mRNAs, among which 28 negative relation ship pairs and 5 key axes (hsa-miR-20a-5p/VEGFA, hsa-let-7b- 5p/MSN, hsa-let-7b-5p /PPP1R16B, hsa-19b-3p/ITGA2, and hsa-19b-3p/PIK3R3) were identified. Conclusion: We report five novel microRNA-mRNA regulatory axes in IBS-D pathogenesis and speculated that PIK3R3, negatively regulated by hsa-miR-19b-3p, may regulate NF-κB production through the PI3K/Akt pathway, which accounts for the occurrence of clinical symptoms in IBS-D patients. Our findings may offer key biomarkers for IBS-D diagnosis and treatment.

Funder

National Natural Science Foundation of China

Jinan 20 Universities funding project

Shandong University of Traditional Chinese Medicine

Publisher

Bentham Science Publishers Ltd.

Subject

Organic Chemistry,Computer Science Applications,Drug Discovery,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3