Structural Maintenance of Chromosome Protein 4 Promotes the Progression of Cardia Adenocarcinoma via Regulation of the Wnt/β-catenin Signaling Pathway

Author:

Zhu Mengqi1,Zhang Xinxin1,Gao Kaiji1,Zhang Lingmei2,Feng Xiaojia1,Wang Hui1,Li Jing1,Jia Jianguang1

Affiliation:

1. Department of Surgical Oncology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, 233000, China

2. Department of Gynecological Oncology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, 233000, China

Abstract

Background: Structural maintenance of chromosome protein 4 (SMC4) is crucial for chromosome assembly and separation, but its role and mechanism in cardia adenocarcinoma (CA) are unknown. Methods: SMC4 expression levels were initially detected by protein profiling in 20 pairs of CA tumor tissues and adjacent normal tissues. The level of SMC4 expression in CA cells was then evaluated using a western blot analysis. Cell proliferation was evaluated by CCK-8 and clone formation tests. Scratch and transwell tests were used to investigate cell migration as well as invasion, while through the flow cytometry, we examined the cell apoptosis and progression of the cell cycle. The regulatory effects of the epithelial-mesenchymal transition (EMT) and the Wnt/β- catenin pathway were investigated using western blot. A tumorigenesis experiment was used to investigate the influence of SMC4 on tumor development in nude mice. Results: This study showed overexpression of SMC4 in CA tissues and cells. Knockdown of SMC4 can significantly inhibit the proliferation, migration and invasion, stimulate cell apoptosis, induce cell cycle arrest in the G0/G1 phase of CA cells, and inhibit tumor growth in vivo. In addition, down-regulation of SMC4 resulted in decreased expression of Bcl-2, Cyclin D1, CDK4, CDK6, β-catenin, phosphorylated GSK-3β, N-cadherin, and Vimentin, with an increased level of proteins, i.e., Bax, cleaved-caspase3, and E-cadherin. When SMC4 was overexpressed, these effects were reversed. Conclusion: SMC4 can facilitate the biological progression of CA, suggesting that SMC4 could be a potential therapeutic target for the disease.

Publisher

Bentham Science Publishers Ltd.

Subject

Organic Chemistry,Computer Science Applications,Drug Discovery,General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3