Identifying the Mechanisms and Molecular Targets of Guchang Zhixie Pills on Ulcerative Colitis: Coupling Network Pharmacology with GEO Database and Experiment Verification

Author:

Wang Weihao1,Song Xujiao1,Ding Shanshan1,Chen Chunlin1,Ma Hao2

Affiliation:

1. School of Chemical and Biological Engineering, Yichun University, Yichun 336000, Jiangxi, China

2. Aesthetic Medical School, Yichun University, Yichun 336000, Jiangxi, China

Abstract

Objective: This research investigates the mechanisms and molecular targets of the Guchang Zhixie pill (GCZXP) against ulcerative colitis (UC) in silico and in vivo. Methods: The compounds and related targets of GCZXP were collected from the traditional Chinese medicine systems pharmacology database. UC targets were from Gene Expression Omnibus and GeneCards databases. Hub genes were acquired through Cytoscape. Gene ontology and Kyoto Encyclopedia of Genes and Genomes enrichment were performed in the David database. R packages were used to investigate the relationship between immune cells and hub genes and the diagnostic model. AutoDock was used to verify the molecular docking of the core compounds and hub genes, as well as nuclear factor-kappa B (NF-κB) p65 and IκBα. The hub genes and NF-κB pathway were verified via experiment. Results: In GCZXP, a total of 51 active compounds were discovered. Enrichment analysis was used to study inflammation, chemokine activity, NF-κB signalling pathway, etc. Thirteen key therapeutic targets were involved, of which included three hub genes PTGS2, IL-1β and CXCL8. Immune infiltration revealed that all of the 3 hub genes were positively correlated with M1 macrophages, neutrophils, and activated memory CD4 cells, and negatively correlated with plasma cells. In the training and validation sets, the area under the curve (AUC) of the diagnostic model developed by hub genes reached 0.929 and 0.905, respectively, indicating a good forecasting potential. The rat experiment proved that GCZXP significantly reduced the expressions of IL-1β, CXCL8, COX-2, and NF-κB p65 while increasing IκBα and Bcl-2, alleviated colonic inflammatory injury and promoted ulcer healing. Conclusion: GCZXP reduced the release of cytokines and regulated Bcl-2 in the treatment of UC by inhibiting the NF-κB signalling pathway.

Publisher

Bentham Science Publishers Ltd.

Subject

Organic Chemistry,Computer Science Applications,Drug Discovery,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3