Hypoxia-induced Long Non-coding RNA LSAMP-AS1 Regulates ceRNA Network to Predict Prognosis for Pancreatic Cancer

Author:

Li Lincheng12,Zou Wenbo12,Xiao Zhaohui2,Deng Zhaoda12,Liu Rong2

Affiliation:

1. Medical School of Chinese PLA, Chinese PLA General Hospital, Beijing, China

2. Faculty of Hepato-Pancreato-Biliary Surgery, the First Medical Center, Chinese PLA General Hospital, Beijing, China

Abstract

Background: The limited efficacy of chemotherapy and immunotherapy for pancreatic cancer is thought to be largely influenced by the surrounding cancer microenvironment. The hypoxic microenvironment caused by insufficient local blood supply is very important. However, the method to assess the level of hypoxia in the microenvironment of pancreatic cancer (PC) remains unclear. Methods: In our research, we downloaded transcriptomic and clinicopathological data from the Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO). A prognostic model was developed using univariate and multivariate Cox regression. The ConsensuClusterPlus R package was used to consistently cluster PC samples through unsupervised clustering. Gene set variation analysis (GSVA) was performed to identify the different functional phenotypes. The CIBERSORT evaluated the infiltration status of immune cells. qRT‐PCR was performed to detect the expression of genes in PC cells and tissues. Results: A preliminary risk model was developed to reflect the hypoxic environment of pancreatic cancer. We found that a high hypoxia risk score indicated poor long-term survival and the presence of an immunosuppressive microenvironment. In addition, based on prognostic hypoxia-related genes, 177 PC samples were divided into two subtypes. Compared with cluster 2, cluster 1 was defined as the "hypoxic subgroup". The infiltration of CD8 T cells, activated memory CD4 T cells, naive B cells, memory B cells, plasma cells, and neutrophils were lower in cluster 1, suggesting that there was significant immunosuppression in cluster 1. Beyond that, we constructed a ceRNA regulatory network composed of differentially expressed lncRNA, miRNA, and mRNA. LSAMPAS1/ hsa-miR-129-5p/S100A2 has been identified as a key ceRNA network that regulates the hypoxic environment and the prognosis of PC. Notably, in our study, qRT-PCR revealed the relative expression of LSAMP-AS1 and S100A2 was significantly upregulated in PC cells and tissue. Conclusion: The hypoxia-related prognostic risk model and core ceRNA network established in our study will provide a new perspective for exploring the carcinogenic mechanism and potential therapeutic targets of pancreatic cancer.

Publisher

Bentham Science Publishers Ltd.

Subject

Organic Chemistry,Computer Science Applications,Drug Discovery,General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3