Lead Finding from Selected Flavonoids with Antiviral (SARS-CoV-2) Potentials Against COVID-19: An In-silico Evaluation

Author:

Gorla Uma Sankar1ORCID,Rao Koteswara1,Kulandaivelu Uma Sankar1,Alavala Rajasekhar Reddy1,Panda Siva Prasad1

Affiliation:

1. College of Pharmacy, Koneru Lakshmaiah Education Foundation, Vaddeswaram, Andhra Pradesh, India

Abstract

Background: COVID-19 is a pandemic respiratory contagious viral (SARS-CoV-2) disease associated with high morbidity and mortality worldwide. Currently, there are no effective preventive or treatment strategies for COVID-19 and it has been declared as a global health emergency by WHO. In silico molecular docking studies can be useful to predict the binding affinity between the phytocompound and the target protein and play a vital role in finding an inhibitor through structure-based drug design. Objective: In this aspect, our objective was to screen essential flavonoids against possible protein targets such as SARS-CoV-2 spike glycoprotein receptor binding domain (RBD-S) and host Angiotensin Converting Enzyme-2 protease domain (PD-ACE-2) using in silico molecular docking studies. Methods: Approximately 49 flavonoids were identified and were evaluated for their drug-likeness based on Lipinski rule, bioactivity scores, antiviral and toxicity profiles using SwissADME, Molinspiration, PASS and GUSAR online tools. The flavonoids that passed Lipinski rule were subjected to in silico analysis through molecular docking on RBD-S and PD-ACE-2 using Molegro Virtual Docker v6.0. Results: The bioactive flavonoids that showed NIL violations and were found in compliance with Lipinski rule were selected for docking studies. In silico analysis reported that biochanin A and silymarin bind significantly at the active sites of RBD-S and PD-ACE-2 with a MolDock score of -78.41and -121.28 kcal/mol respectively. Bioactivity scores, antiviral potential and toxicity profiles were predicted for the top interacting phytocompounds and substantial relevant data was reported. Conclusion: The current outcomes created a new paradigm for understanding biochanin A and silymarin bioflavonoids as potent inhibitors of RBD-S and PD-ACE-2 targets respectively. Further work can be extended to confirm their therapeutic potential for COVID-19.

Publisher

Bentham Science Publishers Ltd.

Subject

Organic Chemistry,Computer Science Applications,Drug Discovery,General Medicine

Cited by 29 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3