Green Synthesis of Au-Ni Bimetallic Nanoparticles using Aqueous Extract of Coccinia grandis (L.) Voigt and their Catalytic Activity in Oxidation of Alcohols

Author:

Hazarika Munmi1,Das Pankaj1,Puzari Amlan12ORCID

Affiliation:

1. Department of Chemistry, Dibrugarh University, Dibrugarh, 786004, Assam, India

2. Department of Chemistry, N. N. Saikia College, Titabar, 785630, Assam, India

Abstract

Background: In recent years, bimetallic nanoparticles have gained remarkable attention due to their excellent physical and chemical properties. Especially, bimetallic nanoparticles are found to be highly efficient as catalysts in many important organic transformations. Objective: The objective of the present work involves green synthesis of Au-Ni bimetallic nano-particles using plant extract as the bio-reductant and to evaluate their catalytic efficiency in oxidation of alcohols. Methods: The experiment involves a simple and eco-friendly protocol for synthesis of Au-Ni bi-metallic as well as their corresponding monometallic nanoparticles that involves the use of aqueous fruit seed extract of Coccinia grandis(L.) Voigt as the bio-reductant and tannic acid as the bio-stabilizer. The synthesized nanoparticles were characterized by using XRD, TEM, FTIR, TGA etc., and their catalytic activity was evaluated for oxidation of alcohols. Results: The synthesized bimetallic nanoparticles have shown excellent catalytic activity towards aqueous phase oxidation of alcohols to aldehydes under ambient reaction conditions. Further-more, the results have revealed better effective performance of the bimetallic nanoparticles over the corresponding monometallic nanoparticles of gold and nickel, establishing the synergic influence of the two metals. Another attractive feature of this work is that the Au-Ni bimetallic nano-particles could be recycled and reused up to four catalytic cycles without any significant decline in product yield. Conclusion: The green synthesized bimetallic Au-Ni nanoparticles have shown excellent catalyt-ic activity toward the oxidation of alcohols in aqueous media under ambient reaction conditions. In addition, the nanoparticles are found to be successfully recyclable upto four catalytic cycles.

Publisher

Bentham Science Publishers Ltd.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3