Alien Invasive Aquatic Plant Species in Botswana: Historical Perspective and Management

Author:

Kurugundla C. N.,Mathangwane B.,Sakuringwa S.,Katorah G.

Abstract

Aquatic ecosystems in Botswana have been under threat by the aquatic alien invasive plant species viz., salvinia Salvinia molesta Mitchell, water lettuce Pistia stratiotes L., and water hyacinth Eichhornia crassipes (Mart.) Solms-Laub. While salvinia has been termed the major threat to the Botswana wetlands, water lettuce and water hyacinth are considered to be of minor importance. This review presents the species biology, distribution, historical spread, negative impacts, control achieved right from their discovery in the country by referring to their control and management in the world. Having infested the Kwando-Linyanti-Chobe Rivers in the 1970s, salvinia was initially tried by the use of herbicides, paraquat and glyphosate, between 1972 and 1976. With the discovery of the host specific biological control weevil Cyrtobagous salviniae Calder and Sands in 1981, the weevil was introduced by Namibians on Kwando and Chobe Rivers in 1983 and by Botswana in 1986 in the Okavango Delta. While the control was slowly establishing in Kwando-Linyanti-Chobe Rivers, it became apparent that lakes and perennial swamps within and outside Moremi Game Reserve of the Okavango Delta were infested with salvinia from 1992 onwards. With continuous and sustained liberation of the weevil in the Kwando-Linyanti-Chobe Rivers and in the Okavango Delta between 1999 and 2000, salvinia control was achieved by 2003, and since then the weevil constantly keeps the weed at low levels. The success is mainly due to sustainable monitoring through the application of physical and biological control methods. However, salvinia is still threatening the Okavango Delta due to factors such as tourism activities, boat navigation fishing and transporttion by wild animals. The first occurrence of water lettuce was recorded on Kwando and Chobe Rivers in 1986. Its biocontrol weevil Neohydronomous affinis Hustache was released in the year 1987. The weevil became extinct in Selinda Canal and Zibadianja Lake on Kwando River due to dry and wet events for over 10 years and the weed had been under control biologically on Chobe River. Having surface covered the Selinda and a part of the Zibadianja in high flood and rainfall in 1999/2000 season, research was undertaken to contain water lettuce, which led to its eradication by 2005. Regular physical removal of the water lettuce prior to fruit maturity is an effective method of control or eradicating the weed in seasonal water bodies. The Limpopo Basin (shared by Botswana, South Africa, Zimbabwe and Mozambique) has become vulnerable to water hyacinth infestation. Water hyacinth infested the trans-boundary Limpopo River in 2010 sourced from Hartbeesport Dam on Crocodile River in South Africa. Botswana and South Africa have been consulting each other to implement integrated control of the weed jointly in the Limpopo River. Water hyacinth could be a continuous threat to the dams and the rivers in the Limpopo basin if its control is not taken seriously. These three species are found growing in Botswana in a range of pH between 4.5 and 10.3 and in the range of conductivities between 20 and 580 µS cm-1. Range of soluble nitrates, phosphates and potassium in the habitats of salvinia infestations were 0.02 to 1.5, 0.01 to 1.78 and 0.3 to 6.92 mg L-1 respectively. Water lettuce infestation in the seasonal Selinda Canal had a maximum of 4.7 mg L-1 nitrates, 2.8 mg L-1 phosphates and 7.9 mg L-1 potassium. Nevertheless, these three nutrients were in the range of 0.41 to 9.56 mg L-1, 0.2 to 2.9 mg L-1, and 7.7 to 11.53 mg L-1 respectively in the Limpopo River where water hyacinth infestations were observed. These nutrients were considerably high during decomposition phase of biological control of weeds. The Government of Botswana “regulates the movement and importation of boats and aquatic apparatus, to prevent the importation and spread of aquatic weeds both within and from the neighboring countries” by “Aquatic Weed (Control) Act” implemented in 1986. These measures, combined with communities, conservation groups, NGOs and public awareness campaigns, have highlighted the gravity of aquatic weeds spreading into wetlands, dams and other water bodies. In conclusion, the Government of Botswana is committed and supportive through the Department of Water Affairs in protecting the wetlands of the country efficiently and prudently.

Publisher

Bentham Science Publishers Ltd.

Reference215 articles.

1. Henderson L, Cilliers CJ. Invasive aquatic plants: a guide to the identification of the most important and potentially dangerous invasive aquatic and wetland plants in South Africa PPRI Hand Book No 16. Pretoria: Agriculture Research Council 2002.

2. Buckingham G. Biological control of aquatic weeds. In: Rossen D, Bennet FD, Capinera JL, Eds. Pest Management in the Subtropics Biological Control - a Florida Perspective, Intercept. United Kingdom 1994; pp. 413-80.

3. Strecker SL, Campbell PM, Olden JD. The aquarium trade as an invasion pathway in the Pacific Northwest. Fisheries 2011; 36 : 74-85.

4. Azan S, Bardecki M, Laursen AE. Invasive aquatic plants in aquarium and ornamental pond industries: a risk assessment for southern Ontario (Canada). Weed Res 2015; 55 : 249-59.

5. Ndimele P, Kumolu-Johnson C, Anetekhai M. The invasive aquatic macrophyte, water hyacinth {Eichhornia crassipes (Mart.) Solm-Laubach: Pontedericeae}: problems and prospects. Res J Environ Sci 2011; 5 : 509-20.

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3