Genetic Fidelity Testing Using SSR Marker Assay Confirms Trueness to Type of Micropropagated Coconut (Cocos nucifera L.) Plantlets Derived from Unfertilized Ovaries

Author:

Bandupriya H.D.D.,Iroshini W.W.M.A.,Perera S A C N,Vidhanaarachchi V.R.M.,Fernando S.C.,Santha E.S.,Gunathilake T.R.

Abstract

Background: In vitro culture techniques provide an excellent platform for the multiplication of recalcitrant species such as coconut and thereby increase the homogeneity of the plantations. Clonal fidelity is one of the most important pre-requisites in a micropropagation protocol of crop species especially those with long life spans. Objective: The present study was conducted in order to determine the genetic homogeneity of coconut plantlets derived from unfertilized ovaries through somatic embryogenesis. Method: Twenty randomly selected plantlets at acclimatization stage, from two mother palms were subjected to Simple Sequence Repeats analysis. Thirteen highly polymorphic microsatellite primers were used for the detection of genetic fidelity in the clonal plantlets and their respective parent. Results: These plantlets showed no apparent differences among themselves and were comparable with the respective mother palm in the Simple Sequence Repeats analysis. The results obtained from this study suggest that there is no somaclonal variation or genetic instability occurring in plantlets that are regenerated from ovary explants. Conclusion: The absence of any sign of somaclonal variation suggests that somatic embryogenesis protocol did not induce the changes in gene structure, which had remained stable throughout the period that had been maintained in vitro. Determination of genetic fidelity of in vitro plants proved the suitability of regeneration protocol for large scale micropropagation applications for coconut.

Publisher

Bentham Science Publishers Ltd.

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3