Leishmaniasis: Omics Approaches to Understand its Biology from Molecule to Cell Level

Author:

Kumari Indu1,Lakhanpal Dinesh2,Swargam Sandeep2,Nath Jha Anupam3ORCID

Affiliation:

1. Indian Biological Data Centre, Regional Centre for Biotechnology, Faridabad, Haryana, India

2. Centre for Computational Biology and Bioinformatics, School of Life Sciences, Central University of Himachal Pradesh, Shahpur and Dharamshala, Himachal Pradesh, India

3. Computational Biophysics Laboratory, Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur, India

Abstract

Abstract: Leishmaniasis is the second deadliest vector-borne, neglected tropical zoonotic disease and is found in a variety of clinical forms based on genetic background. Its endemic type is present in tropical, sub-tropical and Mediterranean areas around the world which accounts for a lot of deaths every year. Currently, a variety of techniques are available for detection of leishmaniasis each technique having it's own pros and cons. The advancing next-generation sequencing (NGS) techniques are employed to find out novel diagnostic markers based on single nucleotide variants. A total of 274 NGS studies are available in European Nucleotide Archive (ENA) portal (https://www.ebi.ac.uk/ena/browser/home) that focused on wild-type and mutated Leishmania, differential gene expression, miRNA expression, and detection of aneuploidy mosaicism by omics approaches. These studies have provided insights into the population structure, virulence, and extensive structural variation, including known and suspected drug resistance loci, mosaic aneuploidy and hybrid formation under stressed conditions and inside the midgut of the sandfly. The complex interactions occurring within the parasite-host-vector triangle can be better understood by omics approaches. Further, advanced CRISPR technology allows researchers to delete and modify each gene individually to know the importance of genes in the virulence and survival of the disease-causing protozoa. In vitro generation of Leishmania hybrids are helping to understand the mechanism of disease progression in its different stages of infection. This review will give a comprehensive picture of the available omics data of various Leishmania spp. which helped to reveal the effect of climate change on the spread of its vector, the pathogen survival strategies, emerging antimicrobial resistance and its clinical importance.

Publisher

Bentham Science Publishers Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3