Characterization of Oligomer Formation of Surfactant Protein-D (SP-D) Using AF4-MALLS

Author:

Manning Mark Cornell12,Manning Ryan R.3,Holcomb Ryan E.12,Katayama Derrick S.12,Pauletti Giovanni M.4,Grant Shawn N.5,Rosenbaum Jan S.5

Affiliation:

1. Legacy BioDesign, Johnstown, CO, USA

2. Department of Chemistry, Colorado State University, Fort Collins, CO, USA

3. Great Lakes Bio Design, Charlotte, MI, USA

4. St. Louis College of Pharmacy, St. Louis, MO, USA

5. Airway Therapeutics, Cincinnati, OH, USA

Abstract

Background: Surfactant protein-S (SP-D) is a naturally occurring lung protein with the potential to treat pulmonary infections. A recombinant surfactant protein-D (SP-D) has been produced and was previously found to exist in multiple oligomeric states. Introduction: Separation and characterization of interconverting oligomeric states of a protein can be difficult using chromatographic methods, so an alternative separation technique was employed for SPD to characterize the different association states that exist. Methods: Samples of SP-D were analyzed using asymmetrical flow field-flow fractionation (AF4) using UV and multi-angle laser light scattering (MALLS) detection. The AF4 method appears to be able to separate species as small as the monomer up to the dodecamer (the dominant species) to much larger species with a molar mass greater than 5 MDa. Results: Consistent elution of four distinct peaks was observed after repeated injections. The largest species observed under the last peak (labeled as Peak 4) were termed “unstructured multimers” and were resolved fairly well from the other species. The AF4-MALLS data suggest that only a small fraction of Peak 4 truly corresponds to high molar mass unstructured multimers. All other peaks demonstrated significant molar mass homogeneity consistent with AFM results. Conclusion: AF4-MALLS technology appears to be a powerful analytical approach to characterize the complex and dynamic interplay among different protein oligomeric species of SP-D in an aqueous solution.

Publisher

Bentham Science Publishers Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3