Polyaromatic Hydrocarbon Specific Ring Hydroxylating Dioxygenases: Diversity, Structure, Function, and Protein Engineering

Author:

Sharma Pushpender Kumar1ORCID,Kaur Tanjot2,Lakhawat Sudarshan Singh3,Kumar Vikram1,Sharma Vinay1,Neeraj Ravi Ranjan Kumar1

Affiliation:

1. Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur 303002, Rajasthan, India

2. Department of Biotechnology, Sri Guru Granth Sahib Word University, Fatehgarh Sahib, Punjab, India

3. Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur 303002, Rajasthan, India

Abstract

Abstract: Polycyclic aromatic hydrocarbons (PAHs) are ubiquitously present in the environment. These compounds have demonstrated both mutagenic and carcinogenic properties. In the past few decades, scientists have constantly been looking for a possible route to their biological degradation. Bacterial ring hydroxylating dioxygenases (RHDs) implicated in the polycyclic aromatic hydrocarbon degradation comprise a large family of enzymes. RHD catalyzes the stereospecific oxidation of PAHs by incorporating molecular oxygen into inert aromatic nuclei. These biocatalysts hold the potential to completely transform and mineralize toxic forms of these compounds into non-toxic forms. RHDsmediated oxygenation produces cis-dihydrodiols, a chiral compound used in pharmaceutical industries. The Molecular investigation of 16S rRNA and key functional genes involved in pollutant degradation have revealed the dominant occurrence of phylum proteobacteria and actinobacteria in hydrocarbonpolluted environments. The present review is aimed at narrating the diversity, distribution, structural and functional characteristics of RHDs. The review further highlights key amino acids participating in RHDs catalysis. It also discusses the robustness of protein engineering methods in improving the structural and functional activity of the ring hydroxylating dioxygenases.

Publisher

Bentham Science Publishers Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry,General Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3