Affiliation:
1. Department of Proteomics and Mass Spectrometry, Institute of Biomedical Chemistry, Moscow, Russia
2. East China University of Technology, Nanchang City, Jiangxi, China
3. East-Siberian Research and Education Center, Tyumen, Russia
Abstract
Aims:
The main goal of the Russian part of C-HPP is to detect and functionally annotate
missing proteins (PE2-PE4) encoded by human chromosome 18. To achieve this goal, it is necessary to
use the most sensitive methods of analysis.
Background:
However, identifying such proteins in a complex biological mixture using mass spectrometry
(MS)-based methods is difficult due to the insufficient sensitivity of proteomic analysis methods.
A possible solution to the problem is the pre-fractionation of a complex biological sample at the
sample preparation stage.
Objective:
This study aims to measure the detection limit of SRM SIS analysis using a standard set of
UPS1 proteins and find a way to enhance the sensitivity of the analysis and to, detect proteins encoded
by the human chromosome 18 in liver tissue samples, and compare the data with transcriptomic analysis
of the same samples.
Methods:
Mass spectrometry, data-dependent acquisition, selected reaction monitoring, highperformance
liquid chromatography, data-dependent acquisition in combination with pre-fractionation
by alkaline reversed-phase chromatography, selected reaction monitoring in combination with prefractionation
by alkaline reversed-phase chromatography methods were used in this study.
Results:
The results revealed that 100% of UPS1 proteins in a mixture could only be identified at a
concentration of at least 10-9 М. The decrease in concentration leads to protein losses associated with
technology sensitivity, and no UPS1 protein is detected at a concentration of 10-13 М. Therefore, the
two-dimensional fractionation of samples was applied to improve sensitivity. The human liver tissue
was examined by selected reaction monitoring and shotgun methods of MS analysis using onedimensional
and two-dimensional fractionation to identify the proteins encoded by human chromosome
18. A total of 134 proteins were identified. The overlap between proteomic and transcriptomic data in
human liver tissue was ~50%.
Conclusion:
The sample concentration technique is well suited for a standard UPS1 system that is not
contaminated with a complex biological sample. However, it is not suitable for use with a complex biological
protein mixture. Thus, it is necessary to develop more sophisticated fractionation systems for the
detection of all low-copy proteins. This weak convergence is due to the low sensitivity of proteomic
technology compared to transcriptomic approaches. Also, total mRNA was used to perform RNA-seq
analysis, but not all detected mRNA molecules could be translated into proteins. This introduces additional
uncertainty in the data; in the future, we plan to study only translated mRNA molecules-the translatome.
Data is available via ProteomeXchange with identifier PXD026997.
Funder
RUSSIAN SCIENCE FOUNDATION, RSF
Publisher
Bentham Science Publishers Ltd.
Subject
Cell Biology,Molecular Biology,Biochemistry,General Medicine
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献