Phylogenetic and Structural Analysis of Bacterial Nitrilases for the Biodegradation of Nitrile Compounds

Author:

Salwan Richa1ORCID,Sharma Vivek2ORCID,Das Surajit3

Affiliation:

1. College of Horticulture and Forestry (Dr. YS Parmar University of Horticulture and Forestry), Neri, Hamirpur (HP)- 177 001, India

2. University Centre for Research and Development, Chandigarh University (PB)-140413, India

3. Department of Life Science, Laboratory of Environmental Microbiology and Ecology (LEnME), National Institute of Technology Rourkela, Rourkela- 769 008, Odisha, India

Abstract

Background: Microbial nitrilases play a vital role in the biodegradation of nitrilecontaining pollutants, effluent treatments in chemical and textile industries, and the biosynthesis of Indole-3-acetic acid (IAA) from tryptophan in plants. However, the lack of structural information limits the correlation between its activity and substrate specificity. Methods: The present study involves the genome mining of bacteria for the distribution and diversity of nitrilases, their phylogenetic analysis and structural characterization for motifs/ domains, followed by interaction with substrates. Results: Here, we mined the bacterial genomes for nitrilases and correlated their functions to hypothetical, uncharacterized, or putative ones. The comparative genomics revealed four AcNit, As7Nit, Cn5Nit and Cn9Nit predicted nitrilases encoding genes as uncharacterized subgroups of the nitrilase superfamily. The annotation of these nitrilases encoding genes revealed relatedness with nitrilase hydratases and cyanoalanine hydratases. At the proteomics level, the motif analysis of these protein sequences predicted a single motif of 20-28 aa, with glutamate (E), lysine (K) and cysteine (C) residues as a part of catalytic triad along with several other residues at the active site. The structural analysis of the nitrilases revealed geometrical and close conformation in the form of α-helices and β-sheets arranged in a sandwich structure. The catalytic residues constituted the substrate binding pocket and exhibited the broad nitrile substrate spectra for aromatic and aliphatic nitriles-containing compounds. The aromatic amino acid residues Y159 in the active site were predicted to be responsible for substrate specificity. The substitution of non-aromatic alanine residue in place of Y159 completely disrupted the catalytic activity for indole-3-acetonitrile (IAN). Conclusion: The present study reports genome mining and simulation of structure-function relationship for uncharacterized bacterial nitrilases and their role in the biodegradation of pollutants and xenobiotics, which could be of applications in different industrial sectors.

Funder

National Medicinal Plants Board, Ministry of Ayurveda, Government of India

Publisher

Bentham Science Publishers Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry,General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3