Addition of Mercury Causes Quenching of NIR Fluorescence Emission Spectra of a Photoactivatable PAiRFP1 Protein

Author:

Hassan Fakhrul1,Khan Faez Iqbal23ORCID,Juan Feng4,Khan Abbas5,Lai Dakun3

Affiliation:

1. Faculty of Rehabilitation and Allied Health Sciences, Riphah International University, Islamabad 46000, Pakistan

2. Department of Biological Sciences, School of Science, Xi’an Jiaotong-Liverpool University, Suzhou, Jiangsu, China

3. School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, China

4. School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China

5. Department of Bioinformatics and Biological Statistics, School of Life Sciences and Biotechnology Shanghai Jiao Tong University, Shanghai 200240, People’s Republic of China

Abstract

Background: Biliverdin (BV) containing far-red light photoactivatable near-infrared fluorescent protein (NIR-FP) named PAiRFP1 has been developed by directed molecular evolution from one bathy bacteriophytochrome of Agrobacterium tumefaciens C58 called Agp2 or AtBphP2. Usually, the fluorescence intensity of the NIR emission spectra of PAiRFP1 tends to increase upon repeated excitation by far-red light. Objective: This study aimed at exploring the role of PAiRFP1 and its mutants, such as V386A, V480A, and Y498H, as NIR biosensors for the detection of Hg2+ ions in the buffer solutions. Methods: In this study, we used PCR-based site-directed reverse mutagenesis, fluorescence spectroscopy, and molecular modeling approaches on PAiRFP1 and its mutants. Results: It was found that PAiRFP1 and its mutants experienced strong quenching of NIR fluorescence emission spectra upon the addition of different concentrations (0-3μM) of mercuric chloride (HgCl2). Conclusion: We hypothesized that PAiRFP1 and its variants have some potential to be used as NIR biosensors for the in vitro detection of Hg2+ ions in biological media. Moreover, we also hypothesized that PAiRFP1 would be the best tool to use as a NIR biosensor to detect Hg2+ ions in living organisms because of its higher signal-to-noise (SNR) ratio than other infra-red fluorescent proteins.

Funder

Sichuan Science and Technology Program

China Postdoctoral Science Foundation

Publisher

Bentham Science Publishers Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3