2’-Deoxyribose Mediated Glycation Leads to Alterations in BSA Structure Via Generation of Carbonyl Species

Author:

Rafi Zeeshan1,Alouffi Sultan2,Khan Mohd Sajid3,Ahmad Saheem2

Affiliation:

1. Department of Bioengineering, Integral University, Lucknow, 226026, UP, India

2. College of Applied Medical Sciences, University of Ha’il, Ha’il, Saudi Arabia

3. Department of Bioscience, Integral University, Lucknow, 226026, UP, India

Abstract

The non-enzymatic glycosylation is a very common phenomenon in the physiological conditions which is mediated by distinct chemical entities containing reactive carbonyl species (RCS) and participates in the modification of various macromolecules particularly proteins. To date, various carbonyl species, i.e., glucose, fructose, D-ribose and methylglyoxal have been used frequently to assess the in-vitro non-enzymatic glycosylation. Similarly, 2'-Deoxyribose is one of the most abundant reducing sugar of the living organisms which forms the part of deoxyribonucleic acid and may react with proteins leading to the production of glycation intermediates, advanced glycation end products (AGEs) and highly reactive RCS. Thymidine phosphorylase derived degradation of thymidine contributes to the formation of 2'-Deoxyribose, therefore, acting as a major source of cellular 2'- Deoxyribose. Since albumin is a major serum protein which plays various roles including binding and transporting endogenous and exogenous ligands, it is more prone to be modified through different physiological modifiers; therefore, it may serve as a model protein for in-vitro experiments to study the effect of 2’Deoxyribose mediated modific#039;-Deoxyribose followed by examining secondary and tertiary structural modifications in BSA as compared to its native (unmodified) form by using various physicochemical techniques. We evident a significant modification in 2'-Deoxyribose-glycated BSA which was confirmed through increased hyperchromicity, keto amine moieties, carbonyl and hydroxymethylfurfural content, fluorescent AGEs, altered secondary structure conformers (α helix and β sheets), band shift in the amide-I region and diminished free lysine and free arginine content. These modifications were reported to be higher in 100 mM 2'-Deoxyribose-glycated BSA than 50 mM 2'- Deoxyribose-glycated BSA. Our findings also demonstrated that the rate of glycation is positively affected by the increased concentration of 2'-Deoxyribose. The results of the performed study can be implied to uncover the phenomenon of serum protein damage caused by 2'-Deoxyribose leading towards diabetic complications and the number of AGE-related diseases.

Funder

King Saud University

Publisher

Bentham Science Publishers Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3