Single Stranded DNA Immune Modulators with Unmethylated CpG Motifs: Structure and Molecular Recognition by Toll-Like Receptor 9

Author:

Fehér Krisztina1

Affiliation:

1. Department of Inorganic and Analytical Chemistry, Faculty of Natural Sciences and Technology, Debrecen University, Debrecen, Hungary

Abstract

Single stranded microbial DNA fragments with unmethylated deoxycytidylyldeoxyguanosine dinucleotide (CpG) motifs are interpreted as danger signals by the innate immune system via recognition by the Toll-like Receptor 9 (TLR9). Their synthetic analogues, Oligodeoxynucleotides (ODN) comprise a promising class of immune modulators with potential applications in the treatment of multiple diseases, such as cancer, autoimmune diseases or allergy. ODN molecules contain a core hexamer sequence, which is species specific consisting of GACGTT and AACGT for mouse and GTCGTT in humans. Assessment of structural features of different type of ODNs is highly challenging. NMR spectroscopic insights were gained for a short, single CpG motif containing ODN 1668. The structural basis of ODN recognition by TLR9 recently started to unravel as crystal structures of TLR9 orthologues in complex with ODN 1668 were solved. Systematic investigations of ODN sequences revealed that ODNs with a single CpG motif are capable of activating mouse TLR9, but two closely positioned CpG motifs are necessary for activation of human TLR9. Furthermore, longer ODNs with TCC and TCG sequences at the 5’ end were shown to activate TLR9 with higher efficiency. It was revealed that 5’-xCx motif containing short ODNs (sODN) are able to augment the immune response of short, single CpG containing ODNs, which are incapable of activating of TLR9 alone. All these observations pointed to the existence of a second binding site on TLR9, which was characterized in crystal structures that delivered further insights of the nucleic acid recognition of the innate immune system by TLR9.

Funder

New National Excellence Program of Debrecen University

János Bolyai Research Scholarship of the Hungarian Academy of Sciences

Research Grant from the Research Foundation-Flanders

Marie Curie Career Integration Grant (CIG) from the European Commission

Publisher

Bentham Science Publishers Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3