A Mitochondrial Approach to Cardiovascular Risk and Disease

Author:

Veloso Caroline D.1ORCID,Belew Getachew D.1ORCID,Ferreira Luciana L.1ORCID,Grilo Luís F.1ORCID,Jones John G.1ORCID,Portincasa Piero2ORCID,Sardão Vilma A.1ORCID,Oliveira Paulo J.1ORCID

Affiliation:

1. CNC-Center for Neuroscience and Cell Biology, UC-Biotech, University of Coimbra, Biocant Park, Cantanhede, Portugal

2. Clinica Medica “A. Murri”, Department of Biomedical Sciences and Human Oncology, University of Bari “Aldo Moro” Medical School, Bari, Italy

Abstract

Background: Cardiovascular diseases (CVDs) are a leading risk factor for mortality worldwide and the number of CVDs victims is predicted to rise through 2030. While several external parameters (genetic, behavioral, environmental and physiological) contribute to cardiovascular morbidity and mortality; intrinsic metabolic and functional determinants such as insulin resistance, hyperglycemia, inflammation, high blood pressure and dyslipidemia are considered to be dominant factors. Methods: Pubmed searches were performed using different keywords related with mitochondria and cardiovascular disease and risk. In vitro, animal and human results were extracted from the hits obtained. Results: High cardiac energy demand is sustained by mitochondrial ATP production, and abnormal mitochondrial function has been associated with several lifestyle- and aging-related pathologies in the developed world such as diabetes, non-alcoholic fatty liver disease (NAFLD) and kidney diseases, that in turn can lead to cardiac injury. In order to delay cardiac mitochondrial dysfunction in the context of cardiovascular risk, regular physical activity has been shown to improve mitochondrial parameters and myocardial tolerance to ischemia-reperfusion (IR). Furthermore, pharmacological interventions can prevent the risk of CVDs. Therapeutic agents that can target mitochondria, decreasing ROS production and improve its function have been intensively researched. One example is the mitochondria-targeted antioxidant MitoQ10, which already showed beneficial effects in hypertensive rat models. Carvedilol or antidiabetic drugs also showed protective effects by preventing cardiac mitochondrial oxidative damage. Conclusion: This review highlights the role of mitochondrial dysfunction in CVDs, also show-casing several approaches that act by improving mitochondrial function in the heart, contributing to decrease some of the risk factors associated with CVDs.

Funder

European Union’s Horizon 2020 Research and Innovation programme

Foundation for Science and Technology

Operational Programme Competitiveness

Publisher

Bentham Science Publishers Ltd.

Subject

Drug Discovery,Pharmacology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3