Affiliation:
1. Laboratory of Structural Chemistry & Biology and MTA-ELTE Protein Modeling Research Group at the Institute of Chemistry, Eotvos Lorand University, H-1518, 112, PO Box 32, Budapest, Hungary
Abstract
The recent high-resolution structures of amyloid fibrils show that the organization of peptide segments into amyloid aggregate architecture is a general process, though the morphology is more complex and intricate than suspected previously. The amyloid fibrils are often cytotoxic, accumulating as intracellular inclusions or extracellular plaques and have the ability to interfere with cellular physiology causing various cellular malfunctions. At the same time, the highly ordered amyloid structures also present an opportunity for nature to store and protect peptide chains under extreme conditions – something that might be used for designing storage, formulation, and delivery of protein medications or for contriving bio-similar materials of great resistance or structure-ordering capacity. Here we summarize amyloid characteristics; discussing the basic morphologies, sequential requirements and 3D-structure that are required for the understanding of this newly (re)discovered protein structure – a prerequisite for developing either inhibitors or promoters of amyloid-forming processes
Funder
European Regional Development Fund
Hungarian Ministry of Human Capacities
Publisher
Bentham Science Publishers Ltd.
Subject
Cell Biology,Molecular Biology,Biochemistry,General Medicine
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献