Acute Toxicity and Efficacy of Nanomaterial based Decontamination Formulation Developed for Personal Decontamination against Chemical Warfare Agents

Author:

Gautam Anshoo,Prasad Gangavarapu K.,Singh Deeksha,Vijayaraghavan Rajagopalan

Abstract

Background: This study addresses the efficacy of nanomaterials based formulation developed for personal decontamination application against chemical warfare agents and used in Personal Decontamination Kit (PDK). It has the potential to decontaminate the skin of an individual, protective equipment, and small arms contaminated with chemical warfare agents. As this formulation has been developed for personal decontamination, risk of nanomaterial toxicity would always be there while sprinkling or applying to the affected area. It may get into the body through various routes specifically through the inhalation route. Aim: The aim of this study was to evaluate in vivo decontamination efficiency of the formulation and acute inhalation, intratracheal, intranasal, oral, dermal, and intraperitoneal toxicity of the formulation. Materials and Methods: 14 days survival was recorded for the evaluation of decontamination efficiency of this formulation. Various endpoints were considered while assessing the toxicity of Nanomaterial Decontamination Formulation which include Organ Body Weight Index (OBWI), serum biochemical parameters, and respiratory variables like tidal volume, respiratory rate, time of inspiration, time of expiration, etc. LD50 of the formulation were also determined for various routes. As skin is the primary organ to come in contact with the decontaminant, its primary skin irritation response has also been determined in this study. Results and Conclusion: It was found that there is no gross acute toxicity observed at different doses. Though there were some changes in the initial respiratory pattern, they were all later recovered. The preliminary histological evaluation did not show any adverse effect on various organs after exposure with NDF.

Publisher

Bentham Science Publishers Ltd.

Subject

Biochemistry, medical,Clinical Biochemistry,Medicine (miscellaneous)

Reference23 articles.

1. Dalton CH, Hall CA, Lydon HL, et al. Development of haemostatic decontaminants for the treatment of wounds contaminated with chemical warfare agents. 2: evaluation of in vitro topical decontamination efficacy using undamaged skin. J Appl Toxicol 2015; 35 (5) : 543-50.

2. Gautam A, Vijayaraghavan R. Prophylactic effect of gossypin against percutaneously administered sulfur mustard. Biomed Environ Sci 2007; 20 (3) : 250-9.

3. Gautam A, Vijayaraghavan R. Drde-07: A possible antidote for sulphur mustard toxicity. Cell Mol Biol 2010; 56 (Suppl.) : OL1334-40.

4. Sun JH, Sun PP, Zheng W, et al. Skin decontamination efficacy of potassium ketoxime on rabbits exposed to sulfur mustard. Cutan Ocul Toxicol 2015; 34 (1) : 1-6.

5. Vijayaraghavan R, Kumar P, Dubey DK, Singh R. Evaluation of CC2 as a decontaminant in various hydrophilic and lipophilic formulations against sulphur mustard. Biomed Environ Sci 2002; 15 (1) : 25-35.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3