Electrospinning Fabrication of PA66 Colloidal Crystal Fibers with Various Morphologies

Author:

Guangchen Pei12,Pingping Wu13,Jingxia Wang12

Affiliation:

1. Key Laboratory of Bio-inspired Materials and Interfaces Sciences, Technique Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China

2. School of Future Technologies, Materials Science and Optoelectronic Engineering, University of Chinese Academy of Sciences, Beijing, 101407, China

3. School of Chemistry and Chemical Engineering, Xi′an University of Architecture and Technology, Xi′an 710055, China

Abstract

Abstract: Colloidal crystal (CC) fiber has unique light manipulation properties, fiber flexibility, and the potential to be used in the textile industry as an alternative to chemical dyes. Introducing polyamide 66 (PA66) into CC fiber can effectively improve the performance of fibers. In this study, polyamide 66 (PA66) CC fibers with various morphologies were fabricated by electrospinning using high-tensile PA66 and P(St-MMA-AA) latex particles as raw materials, such as closepacked, inlaid, noodle-like, spindle knots, bamboo-like, semi-enclosed, hat-like, etc. The formation mechanism of various fibers was analyzed based on the phase separation and assembly interaction. The prepared PA66 CC fiber film was reported to have unique structural color and enhanced mechanical properties, which can be used as a substrate for drawing various patterns. This work will provide a novel idea for the fabrication of functional CC fiber, which is helpful for the potential applications in the textile industry.

Funder

Ministry of Science and Technology of the People’s Republic of China

National Natural Science Foundation of China

Chinese Academy of Sciences and Dutch Research Project

Publisher

Bentham Science Publishers Ltd.

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3