Ultrahigh-efficiency Enhanced Four-wave-mixing in Si-Ge-Graphene Photonic Crystal Waveguide

Author:

Hou Yujun1ORCID,Jiang Chun1ORCID

Affiliation:

1. State Key Laboratory of Advanced Optical Communication Systems and Networks, Shanghai Jiao Tong University, Shanghai 200240, China

Abstract

Background: All-optical processing has a huge superiority in speed and efficiency than traditional optical-electrical-optical signal processing. Four-wave-mixing is an important nonlinear parametric process to achieve all-optical processing. Objective: We proposed the photonic crystal waveguide to enhance the conversion efficiency of four-wave-mixing significantly in practical application. Results: We demonstrated a waveguide composed of silicon with mono-layer graphene-coated as core and Si-Ge distributed periodically on both sides as cladding. By the introduction of the slow light effect of Si-Ge photonic crystal and the localization effect of graphene, the conversion efficiency of four-wave-mixing had enhanced dramatically. Results:: The conversion efficiency can be increased by 16dB compared with a silicon waveguide. The maximum efficiency as high as -9.1dB can be achieved in the Si-Ge-Graphene photonic crystal waveguide (SGG-PhCWG). The propagation loss can be decreased to 0.032dB/cm. Conclusion:: Numerical results of the proposed SGG-PhCWG matched well with nonlinear coupled- mode theory. This configuration offered a new physical mechanism and solution for alloptical signal processing and high-efficiency nonlinear nanoscale devices.

Funder

National Natural Science Foundation of China

Publisher

Bentham Science Publishers Ltd.

Subject

General Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Frequency Converters for the Terahertz and Infrared Ranges Based on Two-Dimensionally Periodic Graphene Gratings;Journal of Communications Technology and Electronics;2023-01

2. Frequency Converters for the Terahertz and Infrared Ranges;Радиотехника и электроника;2023-01-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3