Single-Cell Data Analysis Reveals Critical Hepatic Cells Subpopulations in the Progression of Non-alcoholic Fatty Liver Disease to Non-Alcoholic Steatohepatitis

Author:

Zhao Cuijuan12,Ji Guixian13,Zhao Xingliang1,Ma Tengqi2,Li Yanhua2,Wu Wenbo2,Zhou Lu14

Affiliation:

1. Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin, 300052, China

2. Department of Gastroenterology, Third Affiliated Hospital of Inner Mongonia Medical University (Inner Mongolia Baogang Hospital), Baotou, 014010, China

3. Department of Gastroenterology and Hepatology, Beichen District Chinese Medicine Hospital, Tianjin, 300499, China

4. Department of Gastroenterology and Hepatology, People’s Hospital of Hetian District, Xinjiang Uygur Autonomous Region, 848007, China

Abstract

Aims:: The aim of this study was to reveal the hepatic cell landscape and function in the progression of NAFLD to NASH. Background:: Non-alcoholic steatohepatitis (NASH) is the progressive form and turning point of nonalcoholic fatty liver disease (NAFLD), which severely causes irreversible cirrhosis as well as hepatocellular carcinoma. The mechanism underlying the progression of NAFLD to NASH has not been revealed. Unraveling the mechanism of action of NAFLD-NASH is an important goal in improving the survival of patients with liver disease. Objective:: The aim of this study is to discover heterogeneous hepatic cells during the progression of NAFLD to NASH. Methods:: Single-nucleus RNA-seq (snRNA-seq) data containing NASH in NAFLD samples were obtained from the Gene Expression Omnibus (GEO) database. Cell types in liver tissues from NASH and NAFLD were identified after dimensionality reduction analysis, cluster analysis, and cell annotation. The cell pathways in which differences existed were identified by analyzing metabolic pathways in Hepatic cells. We also identified cell subpopulations in Hepatic cells. The developmental trajectories of Hepatic cells were characterized by pseudotime trajectory analysis. Single-cell regulatory network inference and clustering analysis identified key transcription factors and gene regulatory networks in Hepatic cells. Moreover, cell communication analysis determined the potential interactions between Hepatic cells and immune cells, and heapatic stellate cells. Results:: Seven cell types were identified in NAFLD and NASH. The proportion of Hepatic cells was lower in NASH and showed greater energy metabolism and glucose metabolism activity. Hepatic cells exhibited heterogeneity, showing two cell subpopulations, Hepatic cells 1 and Hepatic cells 2. Dysregulation of lipid metabolism in Hepatic Cell 2 resulted in lipid accumulation in the liver, which might be involved in the progression of NAFLD. Four key transcription factors, BHLHE40, NFEL2L, RUNX1, and INF4A, were primarily found in Hepatic cells 2. The transcription factors within the hepatic cells 2 subpopulation mainly regulated genes related to lipid metabolism, energy metabolism, and inflammatory response. The cell communication analysis showed that hepatocyte interactions with immune cells were associated with inflammatory responses, while interactions with hepatic astrocytes were associated with liver injury and hepatocyte fibrosis. Conclusion:: The hepatic cells 2 might promote the progression of NAFLD to NASH by regulating metabolic activity, which might contribute to liver injury through inflammation

Publisher

Bentham Science Publishers Ltd.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3