Knockdown of Anoikis-Associated Gene OCIAD2 Reduces Proliferation and Migration of Glioblastoma Cell Lines

Author:

Huang Danna12,Chen Lu12,Liu Yu12,Wu Wuwei12,Liu Yingying12,Pan Yu12

Affiliation:

1. Guangxi Botanical Garden of Medicinal Plants, Nanning 530023, Guangxi, China

2. National Engineering Research Center for the Development of Southwestern Endangered Medicinal Materials, Nanning 530023, Guangxi, China

Abstract

Background: Glioblastoma (GBM) severely disrupts the quality of life of patients. Anoikis represents a significant mechanism in cancer invasion and metastasis. Our study focused on the prognostic relationship between the anoikis-associated gene and GBM and its effect on GBM cell progression. Methods: We downloaded 656 and 979 GBM sample data from TCGA and CGGA cohort datasets, respectively. Fifteen anoikis-associated genes were obtained from the GeneCards database and were subsequently clustered to identify differential genes associated with them. After LAASO screening, the expression values of the 5 differential genes were the sum of LASSO regression coefficients. Survival analysis and ROC curve analysis of anoikis scores were performed using the TCGA training and CGGA validation sets. The prognostic factors were analyzed using Cox regression analysis in GBM. Moreover, CCK-8, colony formation, wound healing, and transwell assay were used to evaluate GBM cell proliferation and migration. Results: Significant differences were observed in the 5-year survival of GBM patients between the two subgroups. Then, our analysis demonstrated that high OCIAD2, FTLP3, IGFBP2, and H19 levels were associated with lower 5-year GBM survival rates, whereas high SFRP2 levels were associated with higher survival rates. Univariate Cox analysis indicated that GBM risk was linked to both anoikis score and grade, while multivariate Cox analysis indicated that GBM risk was associated with both anoikis score and age. Additionally, OCIAD2 was highly expressed in U251MG and T98G cells. Moreover, OCIAD2 silencing inhibited GBM cell proliferation and migration. Conclusion: This study demonstrated the potential of the anoikis-associated gene OCIAD2 as a prognostic biomarker for GBM. Furthermore, we validated in vitro that OCIAD2 promoted GBM cell progression.

Publisher

Bentham Science Publishers Ltd.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3