The NeuroProtect Formula: A Preventive Approach to AD Targeting the HIF-1/PI3K-AKT Signaling Pathway Evaluated through In Vivo, In Vitro, and Network Pharmacology Approaches

Author:

Li Haiyan1ORCID,Hua Qian1,Cheng Shuo1,Liu Xiaoge1,Cai Qingyuan1,Zhang Jiani1,Peng Tiantian1,Li Jiao1,Wang Chunxiang1,Liang Chengbang1,shi Yu1,Wang Xu1,Tan Yan1

Affiliation:

1. School of Traditional Chinese Medicine, School of Life Sciences, School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, No. 11 North 3rd Ring, Eastern Road, Beijing, 100029, China

Abstract

Objective: Alzheimer’s Disease (AD) is a progressive neurodegenerative disorder with limited options for reversing its middle-to-late stages. Early intervention is crucial to slow down disease progression. This study aimed to investigate the potential of the NeuroProtect (NP) formula, a combination of geniposide and Panax notoginseng saponins, in preventing AD. We evaluated the effects of the NP formula on amyloid plaque accumulation, neuronal degeneration, and molecular signaling pathways using in vivo and in vitro models. Methods: To predict functional pathways and potential downstream targets of NP intervention, we employed network pharmacology. The preventative impact of the NP formula was assessed using APP/PS1 mice. We conducted HE staining, ELISA assay, Golgi staining, and immunohistochemistry to detect the protective effect of NP. Additionally, cell experiments were performed to assess cell activity and target protein expression. Results: Network pharmacology analysis revealed 145 drug-disease interactions and identified 5 core active targets associated with AD. Molecular docking results demonstrated strong binding affinity between the components of the NP formula (GP, GN-Rb1, GN-Rg1, NS-R1) and target proteins (STAT3, HIF1A, TLR4, mTOR, VEGFA). Notably, the binding energy between NS-R1 and mTOR was -11.4kcal/mol. Among the top 10 enriched KEGG pathways, the HIF-1 and PI3K-AKT signaling pathways were highlighted. In vivo experiments demonstrated that the NP formula significantly ameliorated pathological changes, decreased the Aβ42/Aβ40 ratio in the hippocampus and cortex, and increased dendritic spine density in the CA1 region during the early stage of AD. In vitro experiments further illustrated the NP formula’s ability to reverse the inhibitory effects of Aβ25-35 on cell viability and regulate the expression of Tlr4, Mtor, Hif1a, Stat3, and Vegfa. Conclusion: Our findings suggest that NP exhibits neuroprotective effects during the early stages of AD, positioning it as a potential candidate for AD prevention. The NP formula may exert its preventive effects through the HIF-1/PI3K-AKT signaling pathway, with mTOR identified as a key target.

Publisher

Bentham Science Publishers Ltd.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3