Vernodalin Triggers ROS-Mediated Apoptosis in TPC-1 Human Papillary Thyroid Cancer Cells via Suppression of the MAPKs Signaling Pathway

Author:

Yang Xijia1,Wei Meng2,An Yuan3,Liang Qinlong3,Nan Jing3,Vijayalakshmi Annamalai4,Wang Zizhang3

Affiliation:

1. Department of General Surgery, Xi'an Gaoxin Hospital, Xi'an, 710000, China

2. Dialysis Department of Nephrology Hospital, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China

3. Department of Head and Neck Surgery, Shaanxi Provincial Tumor Hospital, The Affiliated Hospital of Xi'an Jiaotong Univesity, Xi’an, 710061, P.R. China

4. Galileovasan Offshore and Research And Development Pvt. Ltd, Nagapattinam, Tamil Nadu, 611002, India

Abstract

Background: Thyroid Cancer (TC) is an endocrine organ malignancy that has become more common in recent decades. Vernodalin (VN), a cytotoxic sesquiterpene, has been reported to exhibit anticancer properties against human breast and liver cancer cells. However, no study has explored the efficacy of VN with respect to its antiproliferative and apoptotic action on human Papillary Thyroid Cancer cells (PTC). Objective: The study intended to examine the antitumor and antiproliferative effects of VN and the apoptosis mechanisms underlying its action on TPC-1 human PTC cells. Methods: In this study, we examined the VN cell viability by MTT assay; performed ROS measurement by DCFH staining method, MMP identification by Rh-123 staining method, and apoptotic morphological assay by employing AO/EB and DAPI stain method, and further, p38 MAPK/ERK/JNK cell proliferation markers were determined by western blotting technique. Results: The findings showed that VN could inhibit the growth of PTC cells by increasing intracellular ROS, damaging MMP, and stimulating apoptosis in a concentration-dependent manner. The study demonstrated how VN inhibited TPC-1 cell viability by causing ROS-induced cell death via the MAPK signaling pathway. Conclusion: VN may serve as an agonist to impact apoptosis in PTC cells. In human PTC, VN could play an effective role in chemotherapy. More studies pertaining to animal tumor models are needed to prove its anti-cancer effectiveness in vivo.

Funder

Key Research and Development Program of Shaanxi Program

Publisher

Bentham Science Publishers Ltd.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3