Exploring the Action Mechanism and Validation of the Key Pathways of Dendrobium officinale Throat-clearing Formula for the Treatment of Chronic Pharyngitis Based on Network Pharmacology

Author:

Fang Xi12,Jiang Xiao-Feng12,Zhang Yi-Piao12,Zhou Cheng-Liang12,Dong Ying-Jie12,Bo-Li 12,Lv Gui-Yuan3,Chen Su-Hong12

Affiliation:

1. Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, No. 18, Chaowang Road, Gangshu District, Hangzhou, Zhejiang 310014, China

2. Zhejiang Provincial Key Laboratory of TCM for Innovative R & D and Digital Intelligent Manufacturing of TCM Great Health Products, No. 999 Changhong East Street, Huzhou City, Zhejiang 310023, China

3. College of Pharmaceutical Science, No. 548, Binwen Road, Binjiang District, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China

Abstract

Aim: This study investigated the molecular action mechanism of a compound herb, also known as the Dendrobium officinale throat-clearing formula (QYF), by using network pharmacology and animal experimental validation methods to treat chronic pharyngitis (CP). Methods: The active ingredients and disease targets of QYF were determined by searching the Batman-TCM and GeneCards databases. Subsequently, the drug-active ingredient-target and protein-protein interaction networks were constructed, and the core targets were obtained through network topology. The Metascape database was screened, and the core targets were enriched with Gene Ontology and the Kyoto Encyclopedia of Genes and Genomes. Results: In total, 1403 and 241 potential targets for drugs and diseases, respectively, and 81 intersecting targets were yielded. The core targets included TNF, IL-6, and IL-1β, and the core pathways included PI3K-Akt. The QYF treatment group exhibited effectively improved general signs, enhanced anti-inflammatory ability in vitro, reduced serum and tissue expressions of TNF- α, IL-6, and IL-1β inflammatory factors, and decreased blood LPS levels and Myd88, TLR4, PI3K, Akt, and NF-κB p65 protein expression in the tissues. Conclusion: QYF could inhibit LPS production, which regulated the expression of the TLR4/PI3K/Akt/NF-κB signaling pathway to suppress the expression of the related inflammatory factors (i.e., TNF-α, IL-6, and IL-1β), thereby alleviating the CP process.

Publisher

Bentham Science Publishers Ltd.

Subject

Organic Chemistry,Computer Science Applications,Drug Discovery,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3