Exploring the Therapeutic Potential of Baicalin: Mitigating Anxiety and Depression in Epileptic Rats

Author:

Yang Jiali12,Wang Chengwei1ORCID,Xin Wanhong1ORCID,Liu Jia13,Ping Xin13,Lu Ye13,Zhao Jing13,Pei Lin13

Affiliation:

1. School of Basic Medicine, Hebei University of Chinese Medicine, Shijiazhuang, 050200, Hebei, China

2. School of Integrated Traditional Chinese and Western Medicine, Hebei University of Chinese Medicine, Shijiazhuang, 050200, Hebei, China

3. Hebei Key Laboratory of Turbidity, Hebei Academy of Chinese Medicine Sciences, Shijiazhuang, 050011, Hebei, China

Abstract

Background: Epilepsy is a serious neurological disorder that affects millions of people each year, often leading to cognitive issues and reduced quality of life. Medication is the main treatment, but many patients experience negative side effects. Male Sprague-Dawley (SD) rats were chosen as experimental animals for this experiment due to their physiological and genetic similarities to humans, cost-effectiveness, and ease of handling in a laboratory setting. Aims: The objective of this study was to assess the neuroprotective properties of baicalin (BA) in relation to its impact on anxiety and depressive-like behaviors in the epilepsy model. Methods: Thirty male Sprague-Dawley (SD) rats were selected for this experiment. Pentylenetetrazol (PTZ) kindling (40 mg/kg; i.p.) was utilized to establish an epilepsy model. The effect of BA (50 mg/kg; gavage) on seizure severity (assessed using the Racine scale), anxiety, and depressive- like behaviors (evaluated through open field experiments and forced swimming tests) was examined. Histological examinations, including hematoxylin and eosin (HE) staining and Nissl staining, were conducted to assess neuronal damage. Furthermore, the neuroprotective properties of BA were examined through the analysis of Doublecortin (DCX), MKI67 (KI67), and Brain-Derived Neurotrophic Factor (BDNF) levels in the hippocampus of rats. The inhibitory impact of BA on neuroinflammation was assessed via dual labeling for NOD-like receptor thermal protein domain associated protein 3 (NLRP3) and the microglial marker ionized calcium- binding adapter molecule 1 (Iba-1). The influence of BA on the expression of P2X7 receptor (P2X7R), NLRP3, and Interleukin-1β (IL-1β) was also assessed by reverse transcription quantitative PCR (RT-qPCR) in the brain. Finally, we employed a molecular docking model to assess the extent of receptor-ligand binding. Results: Epilepsy models exhibited significant anxiety and depressive-like behaviors, and BA significantly reduced the severity of seizures in these rats while also alleviating their anxiety and depressive-like behaviors. Moreover, neuronal loss and damage were observed in the hippocampus of epileptic rats, but BA was able to effectively counteract this issue by enhancing BDNF expression and promoting neurogenesis within the hippocampus, especially in the DG region. The co-localization of Iba-1 with NLRP3 indicated the activation of NLRP3 inflammasome in microglia. Subsequent RT-PCR revealed that BA may alleviate anxiety and depressive-like behaviors in epileptic rats by activating the P2RX7/NLRP3/ IL-1β signaling pathway. The final molecular docking results indicated that BA had a good binding affinity with proteins, such as P2RX7, NLRP3, and IL-1β. Conclusion: This study confirmed the effectiveness of BA in improving anxiety and depressivelike behaviors associated with epilepsy. Moreover, it provides theoretical support for the neuroprotective role demonstrated by BA.

Publisher

Bentham Science Publishers Ltd.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3