EEG Brain Signal Processing for Epilepsy Detection

Author:

Jain Shruti1,Paul Sudip2,Sharma Kshitij1

Affiliation:

1. Department of ECE, Jaypee University of Information Technology, Solan, 173234, Himachal Pradesh, India

2. Department of Biomedical Engineering, North-Eastern Hill University, Shillong, 793022, India

Abstract

Background: Millions of neurons make up the human brain, and they play an important role in controlling the body's response to internal and external motor and sensory stimuli. These neurons can function as contact conduits between the human body and the brain. Analyzing brain signals or photographs will help one better understand cognitive function. These states are linked to a particular signal frequency that aids in the comprehension of how a complex brain system works. Objective: Electroencephalography (EEG) is a useful method for locating brain waves associated with different countries on the scalp. Epilepsy is a condition where the brain or some part of it is overactive and sends too many signals. This results in seizures causing muscles to twitch or whole-body convulsions. Methods: In this paper, the author has designed a model to predict epilepsy using machine learning algorithms and deep learning models. For the machine learning algorithm, different features were extracted and a particle swarm optimization algorithm was used to select the best feature which was classified using wavelet transform.Vgg16, Vgg19, and Inception V3 models are used for the detection of epilepsy. Results: The inception V3 model results in 97.87% accuracy which is better than all other techniques. 5.1% accuracy improvement has been observed using a machine learning algorithm. The model is compared using existing work and it has been observed that the proposed model results better. Conclusion: The technique for modeling EEG signals and insight brain signals recorded during surgical procedures has been identified in detail. 0.7% and 0.13% accuracy improvement were achieved when the model is validated on Kaggle and CHB-MIT datasets respectively.

Funder

Department of Science and Technology, SERB

Publisher

Bentham Science Publishers Ltd.

Subject

Electrical and Electronic Engineering,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3