Improving Intelligence Metrics using Frequency Domain Convolutions for Improving Bug Prediction

Author:

Mishra Anurag1,Sharma Ashish1

Affiliation:

1. Department of CSE, GLA University Mathura, India

Abstract

Background: The novelty of the work lies in the formulation of these frequency-based generators, which reflects the lowest level of information loss in the intermediate calculations. The core idea behind the approach presented in this work is that a module with complex logic involved may have more probability of bugs. Software defect prediction is the area of research that enables the development and operations team to have the probability of bug proneness of the software. Many researchers have deployed multiple variations of machine learning and deep learning algorithms to achieve better accuracy and more insights into predictions. Objective: To prevent this fractional data loss from different derived metrics generations, a few optimal transformational engines capable of carrying forward formulations based on lossless computations have been deployed. Methods: A model Sodprhym has been developed to model refined metrics. Then, using some classical machine learning algorithms, accuracy measures have been observed and compared with the recently published results, which used the same datasets and prediction techniques. Results: The teams could establish watchdogs thanks to the automated detection, but it also gave them time to reflect on any potentially troublesome modules. For quality assurance teams, it has therefore become a crucial step. Software defect prediction looks forward to evaluating error-prone modules likely to contain bugs. Conclusion: Prior information can definitely align the teams with deploying more and more quality assurance checks on predicted modules. Software metrics are the most important component for defect prediction if we consider the different underlying aspects that define the defective module. Later we deployed our refined approach in which we targeted the metrics to be considered.

Publisher

Bentham Science Publishers Ltd.

Subject

Electrical and Electronic Engineering,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3