LVRT Enhancement of DFIG-based WECS using SVPWM-based Inverter Control

Author:

P Srinivasan1,Samiappan Dhandapani2,K Muralikrishna3,Nissyjoseph 3,M Roshan3

Affiliation:

1. Department of Electrical and Electronics Engineering, SRM Institute of Science and Technology, Ramapuram

2. Department of Electronics and Communication Engineering, SaveethaEngineering College, Thandalam

3. Student, Department of Electrical and Electronics Engineering, SRM Institute of Science and Technology, Ramapuram

Abstract

Abstract: Across many countries, wind turbine generation systems (WTGS) have been established over the past few decades. In this paper, we augment the low voltage ride-through (LVRT) enrichment facility of driving a DFIG-based wind energy conversion system (WECS) using space vector pulse width modulation (SVPWM)-based inverter control. The proposed technique employs an SVPWM-based control algorithm to regulate the voltage and frequency of the output power during grid faults, thereby enhancing the WECS's ability to remain connected to the grid and provide power. The study focuses on decreasing transient current throughout the instant of fault. Modeling and control approaches were also discussed in this study. The performance of the proposed technique is evaluated using MATLAB/Simulink simulations, and the results demonstrate that the technique effectively improves the LVRT capability of the DFIG-based WECS. Background: Due to the variation in wind speed, the power generated by wind turbines is inconsistent. The power generated and the losses in wind turbines change correspondingly with changes in wind speed. The only type of machine that can generate power at speeds below the fixed speed is the doubly-fed induction generator (DFIG). But DFIG is oversensitive to network faults, which makes the bidirectional converters and DC link capacitor fail due to high inrush current and over-voltage. Methods: The converters connected to DFIG consist of an AC-to-DC converter, a boost converter, and a space vector pulse width modulation (SVPWM)-based DC-AC converter. The performance of the SVPWM controller is analyzed during symmetrical and unsymmetrical fault conditions. Results: The anticipated control provides adequate reactive power support to the network through the time of the fault and improves voltage and current waveform. The reactive power flow is also analyzed, and the effectiveness of the proposed controller is verified using MATLAB and Simulink. Conclusion: SVPWM (Space Vector Pulse Width Modulation)-based inverter control is an effective technique for wind energy conversion systems (WECS). The use of SVPWM can provide accurate and precise control of the AC voltage generated from the DC voltage source, resulting in improved system efficiency and reduced harmonic distortion in the output waveform. The comparative analysis of THD suggests that SVPWM is a superior technique compared to other inverter control techniques such as sine-triangle pulse width modulation (SPWM) and carrier-based pulse width modulation (CPWM). SVPWM can help to reduce the distortion in the output waveform, leading to improved system efficiency, reduced wear on the system components, and overall better performance of the WECS. Furthermore, SVPWM offers several advantages over other inverter control techniques, including better utilization of DC voltage, improved voltage control, and better utilization of switching devices. These advantages make SVPWM a valuable tool for optimizing the operation of WECS and improving the reliability and performance of renewable energy systems. The value of THD for SVPWM inverter control in WECS is 1.53 under symmetrical fault and 1.34 for unsymmetrical fault, respectively. In summary, the use of SVPWM-based inverter control for WECS is an effective way to improve the efficiency and performance of the system while reducing the distortion in the output waveform and providing adequate reactive power support. The advantages of SVPWM over other inverter control techniques make it a valuable tool for the development and optimization of renewable energy systems.

Publisher

Bentham Science Publishers Ltd.

Subject

Electrical and Electronic Engineering,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3