A New Soft-switched Flyback Converter with a Minimum Number of Elements and High Efficiency

Author:

Vesali Mahmood1ORCID,Ranjbar Hosein1ORCID,Rabiei Mostafa1ORCID

Affiliation:

1. Department of Electrical Engineering, Isfahan (Khorasgan) Branch, Islamic Azad University, Khorasgan, Isfahan, Iran

Abstract

Background: This paper proposes a new soft-switching flyback converter with a simple structure and high efficiency. The proposed converter has zero current switching conditions for the turning-on distance and zero voltage switching conditions for the turning-off distance of the switch. Objective: With a minimum number of elements, a soft switching condition is created for all semiconductor devices, and high efficiency is obtained. Methods: To create the ZCS condition, an inductor is used, and when the switch is turned on, the current due to the existence of this inductor increases slowly. But when the switch is turned off, this inductor has an energy that suddenly discharge on the switch, which is then controlled by a capacitor and discharged in capacitor. Then when the energy is discharge in capacitor, this capacitor is connected to the switch, which increases the voltage of the switch slowly and ZVS condition is stablished. Also the energy of leakage inductance in this state is discharged in that same capacitor which eliminates destructive effect of this inductor. Results: A prototype of the proposed converter is implemented and tested in 60 W power. The experimental results verified theoretical analysis and shown that soft switching condition is established. Also 92% efficiency at full load is obtained, which shows the efficiency has increased. The current of the diodes in experimental results shows that when the diodes are turned off, ZCS condition is created, therefore reverse recovery problem of the diodes does not exist. Conclusion: Therefore, the proposed converter has high efficiency and simple structure, which is suitable to convert AC voltage to DC voltage for the devices power supply.

Publisher

Bentham Science Publishers Ltd.

Subject

Electrical and Electronic Engineering,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3